

VFD500M Series

High performance smart Inverter

User Manual

VEIKONG

ShenZhen VEIKONG Electric CO., Ltd.

Factory Address:

Block E01, first industrical park lingbei 5 road ,phoenix community, fuyong street , Bao'an District, Shenzhen ,China

R&D Center: Jin yu cheng building A,Bu Long Rd Bantian Town ,Longgang district Shenzhen City,China Technical Support Hotline: +86-0755-89587650

Web Site: www.veikong-electric.com

Whatsapp +8615989436541

Preface

Thank you for purchasing the VFD500M series high performance vector and torque control frequency inverter

VFD500M is a economical vector control inverter for asynchronous motor control .High reliability, easy to use, compact size and rich functions; support open-loop VF control and speed sensorless vector control, can be used for driving various automatic production equipment

This manual introduces functional characteristics and usage of VFD500M series inverter, includes product model selection, parameter settings, running and debugging, maintenance, checking, and so on. Please be sure to read this manual carefully before operation. For equipment matching manufacturers, please send this manual to your end user together with your devices, in order to facilitate the usage.

PRECAUTIONS

- To describe the product details, the illustrations in the manual sometimes are under the state of removing the outer housing or security covering. While using the product, please be sure to mount the housing or covering as required, and operate in accordance with the contents of manual.
- The illustrations in this manual is only for explanation, may be different from the products you ordered.
- Committed to constantly improving the products and features will continue to upgrade, the information provided is subject to change without notice.
- Please contact with the regional agent or client service center directly of factory if there is any questions during usage.

EDIT: V1.1

TIME: 2020-10

Contents

Chapter 1 Safety Information and Precautions	1
1.1 Safety Precautions	1
1.2 Precaution	2
Chapter 2 Product Information	4
2.1 Designation Rules	4
2.2Product series instruction	4
2.3Technical Specifications	5
Chapter 3 Product appearance and Installation Dimension	8
3.1 Product appearance and installation	8
3.1.1Product appearance	8
3.1.2Appearance and Mounting Hole Dimension	8
3.2Wiring	9
3.2.1 Standard wiring diagram	9
3.2.2Main Circuit Terminals	10
3.2.3 Terminal screws and wiring specifications	11
3.2.4 Cautions for Main Circuit Wiring	11
3.2.5Control Circuit Terminal	12
4.1 LED Instruction of operation and display	16
4.2 Digital tube display	17
Chapter 5 Function Code Table	19
Chapter 6 Fault Diagnosis and Solution	84
6.2 Warning type	90
Chapter 7 Daily maintenance of frequency inverters	91
8.1 Daily maintenance	91
8.1.1 Daily maintenance	91
8.1.2 Regular inspection	91
8.2 Wearing parts replacement	91
8.3Warranty Items	92
Appendix A Modbus communication protocol	93

Chapter 1 Safety Information and Precautions

Safety Definitions: In this manual, safety precautions are divided into the following two categories:

indicates that failure to comply with the notice will result in serous injury or even death

indicates that failure to comply with the notice will result in moderate or minor injury andequipment damage

Read this manual carefully so that you have a thorough understanding. Installation, commissioning or maintenance may be performed in conjunction with this chapter, will assume no liability or responsibility for any injury or loss caused by improper operation.

1.1 Safety Precautions

Use stage	Security Level	Precautions
Before Installation	DANGER MARNING	 packing water, parts missing or damaged parts, please do not install! Packaging logo and physical name does not match, please do not install! Handling should be light lift, otherwise there is the danger of damage to equipment! Do not use damaged drive or missing drive. Risk of injury! Do not touch the control system components by hand, or there is the danger of electrostatic damage!
	DANGER	> Please install the flame retardant objects such as metal, away from combustibles, or may cause a fire!
During Installation WARNING		Do not allow lead wires or screws to fall into the drive, otherwise the drive may be damaged! Install the drive in a place where there is less vibration and direct sunlight. Drive placed in airtight cabinet or confined space, please note the installation of space to ensure the cooling effect.
	DANGER	You must follow the guidance of this manual and be used by qualified electrical engineers. Otherwise, unexpected danger may occur! There must be a circuit breaker between the drive and the power supply, otherwise a fire may occur! Make sure the power supply is in zero-energy state before wiring, otherwise there is danger of electric shock! Please follow the standard to the drive properly grounded, otherwise there is the risk of electric shock!
Wiring	WARNING	Never connect input power to the drive's output terminals (U, V, W). Note that the terminal markings, do not take the wrong line! Otherwise it will cause damage to the drive! Never connect the braking resistor directly to the DC bus +, - terminals. Otherwise it will cause a fire! Refer to the manual's recommendations for the wire diameter used. Otherwise it may happen accident! Do not disassemble the connecting cable inside the driver. Otherwise, the internal of the servo driver may be damaged.
Before Power-on	DANGER	➤ Make sure the voltage level of the input power is the same as the rated voltage of the driver. Check if the wiring position of the power input terminals (R, S, T) and output terminals (U, V, W) is correct; Of

Use stage	Security Level	Precautions
		the external circuit is short-circuited, the connection is tightened, or cause damage to the drive!
		No part of the drive need to withstand voltage test, the product has been
		made before the test. Otherwise it may cause accident!
	Δ.	The driver must be covered before the cover can be powered, otherwise it may cause electric shock!
	<u> </u>	All peripheral accessories must be wired according to the instructions
	WARNING	in this manual, and be properly wired in accordance with this manual.
		Otherwise it may cause accident!
		> Do not open the cover after power on, otherwise there is danger of electric shock!
	<i> </i>	> If the indicator light does not light after power on, the keyboard does
	DANIGED	not display the situation, immediately disconnect the power switch, do
After Power-	DANGER	not touch any input and output terminals of the drive, otherwise there is
on		the risk of electric shock!
	\wedge	If parameter identification is required, preclude the possibility of injury when rotating the motor!
	WARNING	> Do not arbitrarily change the drive manufacturer parameters, or it may
		cause damage to the device!
	A	Do not touch the cooling fan, radiator and discharge resistance to test the temperature, otherwise it may cause burns!
		Non-professional technicians Do not detect the signal during operation,
During	DANGER	otherwise it may cause personal injury or equipment damage!
Operation	\wedge	> Drive operation, should avoid something falling into the device,
	<u> </u>	otherwise it will cause damage to the device! Do not use the contactor on-off method to control the start and stop
	WARNING	the drive, otherwise it will cause damage to the equipment!
		> Do not live on the equipment repair and maintenance, or there is a
		risk of electric shock! Turn off the input power for 10 minutes before performing
		maintenance and repair on the drive, otherwise the residual charge on
	/{}	the capacitor will cause harm to people!
	DANIGED	Do not carry out maintenance and repair on the drive without
Maintenance	DANGER	personnel who have been professionally trained, otherwise personal injury or equipment damage will occur!
		 All pluggable plug-ins must be unplugged in the case of power failure!
		> The parameters must be set and checked after replacing the drive.
	Λ	> Before performing maintenance work on the drive, make sure that the
	<u> </u>	motor is disconnected from the drive to prevent the motor from feeding
	WARNING	back power to the drive due to accidental rotation.

1.2 Precaution

Contactor using

If the contactor is installed on the power input side of the inverter, do not make the contactor frequent on-off operation. The interval between ON and OFF of the contactor should not be less than one hour. Frequent charging and discharging will reduce the use of capacitors in the inverter life.

If a contactor is installed between the inverter output terminals (U, V, W) and the motor, make sure that the inverter is turned on and off when there is no output. Otherwise, the inverter may be damaged.

Lightning impulse protection

Although this series of inverters are equipped with lightning over-current protection device, there is a certain degree of self-protection for inductive lightning, but for lightning frequent place, customers should also install lightning protection device in the front of the inverter.

Altitude and derating use

In areas above 1000m above sea level, it is necessary to derate the inverter due to poor air quality due to poor air quality. In this case, please consult our company.

Power input

The inverter power input should not exceed the operating voltage range specified in this manual. If necessary, use a step-up or step-down device to change the power supply to the specified voltage range. Do not change the three-phase inverter to two-phase input, otherwise it will cause malfunction or inverter damage.

Output filtering

When the cable length between the inverter and the motor exceeds 100 meters, it is suggested to use the output AC reactor to avoid inverter over-current caused by excessive distributed capacitance. Output filter according to the needs of the field matching.

Inverter output is PWM wave, please do not install the capacitor on the output side to improve the power factor or lightning varistor, etc., otherwise it may easily lead to inverter instantaneous overcurrent or even damage the inverter.

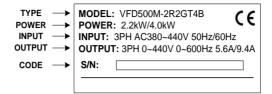
About motor heat and noise

Because the inverter output voltage is PWM wave, contains a certain degree of harmonics, so the motor temperature rise, noise and vibration compared with the same frequency operation will be slightly increased.

Disposal

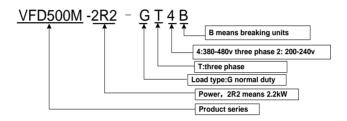
Electrolytic capacitors on the main circuit and electrolytic capacitors on the printed circuit board may explode when incinerated, and poisonous gases are generated when plastic parts are burned. Please dispose as industrial waste.

The scope of application


This product is not designed and manufactured for use on equipment where life is at stake. To use this product on a mobile, medical, aerospace, nuclear or other special purpose device, please contact our company For more information.

This product is manufactured under strict quality control and should be equipped with a safety device if it is used in a device that may cause a serious accident or damage due to inverter failure.

Chapter 2 Product Information


2.1 Designation Rules

Name plate:

2-1 name plate

Model instruction:

2-2model instruction

2.2Product series instruction

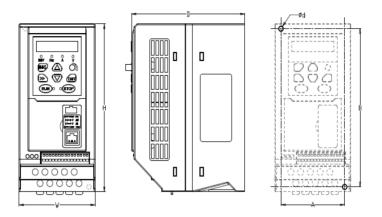
Table 2-1VFD500M inverter models and technical data

Model	Power capacity	Input current	Out currer		Adapt able Motor	SIZE	Brake Unit
	(KVA)	(A)	load	load	(KW)		Onne
	3 pł	nase: 380V-	480V, 50	/60Hz			
VFD500M-R75GT4B	1.6	3.2	2.5	4.2	0.75		
VFD500M-1R5GT4B	2.8	4.7	4.2	5.6	1.5	SIZE B	Internal
VFD500M-2R2GT4B	3.7	7.8	5.6	9.4	2.2	SIZE D	Internal
VFD500M-4R0GT4B	6.2	11.6	9.4	10.5	3.7		
VFD500M-5R5GT4B	8.6	15.6	13.0	17.0	5.5	SIZE C	Internal
VFD500M-7R5GT4B	11.2	20.5	17.0	23.0	7.5		
	1 բ	hase: 200-24	40V,50/6	0Hz			
VFD500M-R40GS2B	1.2	6.9	2.8	3.2	0.4	SIZEA	
VFD500M-R75GS2B	2.1	12.2	4.5	4.8	0.75	SIZEA	
VFD500M-1R5GS2B	3.1	17.0	8.0	10.6	1.5	SIZEB	Internal
VFD500M-2R2GS2B	4.1	21.0	10.6	12.5	2.2	SIZED	
3 phase: 200V-240V, 50/60Hz							
VFD500M-R40GT2B	1.2	4	2.8	3.2	0.4		
VFD500M-R75GT2B	2.1	7.1	4.5	4.8	0.75	Size B	Internal
VFD500M-1R5GT2B	3.1	11.3	8.0	10.6	1.5		memai
VFD500M-2R2GT2B	4.1	14.5	10.6	12.5	2.2		

2.3Technical Specifications

Table 2-2 VFD500M Technical Specifications

	Item	Specifiation
	Inuput Voltage	1phase/3phase 220V: 200V~240V 3 phase 380V-480V: 380V~480V
Input	Allowed Voltage fluctuation range	-15%~10%
	Input frequency	50Hz / 60Hz,fluctuation less than 5%
	Output Voltage	1/3phase: 0∼input voltage
Output	Overload capacity	General purpose application: 60S for 150% of the rated current Light load application: 60S for 120% of the rated current
	Control mode	V/f control Sensorless flux vector control without PG card (SVC)
	Operating mode	Speed control、Torque control(SVC)
Control	Speed range	1:100 (V/f) 1:200(SVC)
	Speed control accuracy	±0.5% (V/f) ±0.2% (SVC)


	I	
	Speed response	5Hz(V/f) 20Hz(SVC)
	frequency range	0.00~600.00Hz(V/f) 0.00~200.00Hz(SVC)
	Input frequency resolution	Digital setting: 0.01 Hz Analog setting: maximum frequency x 0.1%
	Startup torque	150%/0.5Hz(V/f) 180%/0.25Hz(SVC)
	Torque control accuracy	SVC: within 5Hz10%, above 5Hz5% VC:3.0%
	•	V / f curve type: straight line, multipoint, power function, V / f
	V/f curve	separation; Torque boost support: Automatic torque boost (factory setting), manual torque boost
	Frequency giving ramp	Support linear and S curve acceleration and deceleration; 4 groups of acceleration and deceleration time, setting range 0.00s ~ 60000s
		Overvoltage stall control: limit the power generation of the motor by adjusting the output frequency to avoid skipping the voltage fault;
	DC bus voltage control	Undervoltage stall control: control the power consumption of the motor by adjusting the output frequency to avoid yaw failure
		VdcMax Control: Limit the amount of power generated by the motor by adjusting the output frequency to avoid over-voltage trip; VdcMin control: Control the power consumption of the motor by adjusting the output frequency, to avoid jump undervoltage fault
	Carrier frequency	1kHz~16kHz(Varies depending on the type)
		, , ,
		Direct start (can be superimposed DC brake); speed tracking start
	Stop method	Deceleration stop (can be superimposed DC braking); free to stop
	Maincontrol function	Jog control, droop control, up to 16-speed operation, dangerous speed avoidance, swing frequency operation, acceleration and deceleration time switching, VF separation, over excitation braking, process PID control, sleep and wake-up function, built-in simple PLC logic, virtual Input and output terminals, built-in delay unit, built-in comparison unit and logic unit, parameter backup and recovery, perfect fault record,fault reset, two groups of motor parametersfreeswitching, software swap output wiring, terminals UP / DOWN
	Keypad	LED Digital keypad and LCD keypad(option)and external LED display
	communication	Standard: MODBUS communication
	Input terminal	Size A:4 digital input terminals and 1 analog input terminals Size B:5 digital input terminals,one of which supports high-speed pulse input up to 50kHz;2 analog input terminalssupport 0 ~ 10V voltage inpu or 0 ~ 20mA current input;
Function	Output terminal	Size A 1 digital output terminal; 1 relay output terminal(Support NO only) 1 analog output terminals, support 0 ~ 20mA current output or 0 ~ 10V voltage output; Size B 1 digital output terminal; 1 high-speed pulse output terminal (open collector type), support 0 ~ 50kHz square wave signal output; 1 relay output terminal(SUPPORT NO AND NC) 1 analog output terminals, support 0 ~ 20mA current output or 0 ~ 10V voltage output;
Protection	Refer to Chapter 6	6 "Troubleshooting and Countermeasures" for the protection function
Environment	Installation location	Indoor, no direct sunlight, dust, corrosive gas, combustible gas, oil
	-	

		smoke, vapor, drip or salt.		
	Altitude	0-3000m.inverter will be derated if altitude higher than1000m and rated output current will reduce by 1% if altitude increase by 100m		
	Ambient temperature -10°C~ +40°C,maximum 50°C (derated if the ambient temper between 40°C and 50°C)Rated output current decrease by 1.1 temperature increase by 1°C			
	Humidity	Less than 95%RH, without condensing		
	Vibration	Less than 5.9 m/s ² (0.6 g)		
	Storage temperature	-20°C ~ +60°C		
	Installation	Wall-mounted, floor-controlled cabinet, transmural		
Others	Protection level	IP20		
	cooling method	Forced air cooling FOR SIZE B ,SIZE A(NATURAL COOLING)		

Chapter 3 Product appearance and Installation Dimension

3.1 Product appearance and installation

3.1.1Product appearance

3.1.2Appearance and Mounting Hole Dimension

Remark: Od is screw hole diameter for installing

Table 3-1 VFD500M series appearance and installation dimension

SIZE TYPE	Арр	pearance	e and in	stallat	ion din	nensior	n (mm)
SIZE TYPE	А	В	Н	W	D	Фd	Mounting screws
SIZE A	66	137	145	75	115	ø5.0	M4×16
SIZE B	72	165	175	86	128	ø5.0	M4×16
SIZE C	108	225	235	120	158	ø5.0	M4×16

3.2Wiring

3.2.1 Standard wiring diagram

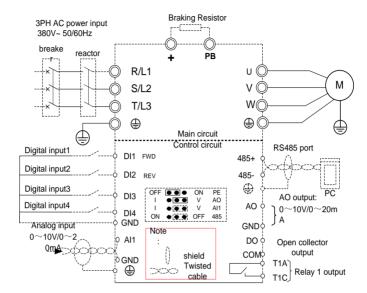


Figure 3-2 (SIZE A) standard wiring diagram

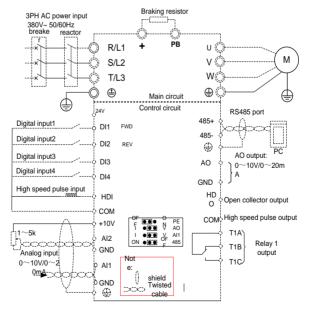


Figure 3-3 (SIZE B/C) standard wiring diagram

3.2.2Main Circuit Terminals

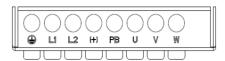


Figure 3-4 SIZE A main circuit terminal diagram

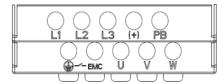


Figure 3-5 SIEZ B main circuit terminal diagram

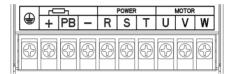


Figure 3-6 SIEZ C main circuit terminal diagram

Table 3-2 Function description of the main circuit terminal of the inverter

Terminal	Function instruction
L1、L2、L3	AC power input terminal, connect three-phase AC power (only
LTX LZX L3	L1/L2 is single phase inverter)
U、V、W	Inverter AC output terminal, connect three-phase AC motor
(+)、PB	Braking resistor connection terminal when built-in brake unit
⊕	Ground terminal, ground
EMC	Safety capacitor and varistor grounding selection screw

3.2.3 Terminal screws and wiring specifications

Table 3-3 Main circuit cable and screw specifications

		Power terminal			Ground terminal		
Model number	Scre w	Tightening torque (N·m)	Cable diameter (mm²)	scre w	Tightening torque (N·m)	Cable diameter (mm²)	
		3 phase voltage	e: 380V, 50/60H	z			
VFD500M-R75GT4B	M4	2	2.5	M4	2	2.5	
VFD500M-1R5GT4B	M4	2	2.5	M4	2	2.5	
VFD500M-2R2GT4B	M4	2	2.5	M4	2	2.5	
VFD500M-4R0GT4B	M4	2	4	M4	2	4	
VFD500M-5R5GT4B	M4	2	6	M4	2	6	
VFD500M-7R5GT4B	M4	2	6	M4	2	6	
		Single phase volta	age: 220V, 50/6	0Hz			
VFD500M-R40GS2B	М3	1.5	2.5	М3	1.5	2.5	
VFD500M-R75GS2B	М3	1.5	2.5	М3	1.5	2.5	
VFD500M-1R5GS2B	M4	2	2.5	M4	2	2.5	
VFD500M-2R2GS2B	M4	2	4.0	M4	2	4.0	

3.2.4 Cautions for Main Circuit Wiring

(1) Power Supply Wiring

- ◆ It is forbidden to connect the power cable to the output terminal of the inverter. Otherwise, the internal components of the inverter will be damaged.
- In order to provide input side overcurrent protection and power outage overhaul convenience, the inverter should be connected to the power supply through circuit breakers and contactors.
- Please confirm the power phase, the voltage is consistent with the product nameplate, do not match may result in damage to the inverter.

(2) DC wiring

- ◆ Do not connect the braking resistor directly to +, -, which may cause the inverter to be damaged or even fire.
- ♦ When using the external brake unit, pay attention to +, can not be reversed, otherwise it will cause damage to the inverter and brake unit or even cause a fire.

(3) Motor Wiring

- It is forbidden to short circuit or ground the inverter output terminal, otherwise the internal components of the inverter will be damaged.
- ◆ Avoid short circuit the output cables or with the inverter enclosure, otherwise there exists the danger of electric shock.

- ♦ It is forbidden to connect the output terminal of the inverter to the capacitor or LC/RC noise filter with phase lead, otherwise, the internal components of the inverter may be damaged.
- •When contactor is installed between the inverter and the motor, it is forbidden to switch on/off the contactor during the running of the inverter, otherwise, there will be large current flowing into the inverter, triggering the inverter protection action.
- ◆Length of cable between the inverter and motor

 If the cable between the inverter and the motor is too long, the higher harmonic leakage current of the output end will produce by adverse impact on the inverter and the peripheral devices. It is suggested that when the motor cable is longer than 100m, output AC reactor be installed. Refer to the following table for the carrier frequency setting.

3.2.5Control Circuit Terminal

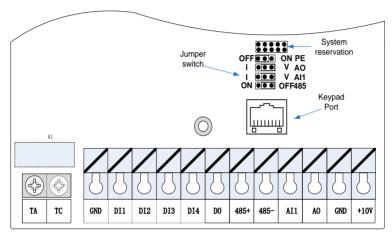


Figure 3-6 Schematic diagram of the VFD500M control circuit terminal (SIZE A)

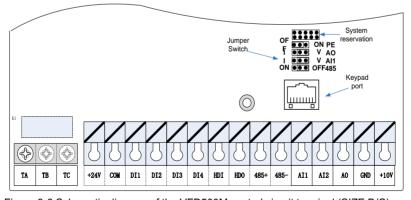


Figure 3-6 Schematic diagram of the VFD500M control circuit terminal (SIZE B/C)

Table 3-3 VFD500M control circuit terminal instruction

Туре	Terminal	Terminal function description	
.,,,,,	Symbol	Terminal Name	Torrisia lariosori dosoription
			10.10V±1%
+10V		Input voltage	Maximum output current:10mA, it provides power supply to external potentiometer with resistance range of: $1K\Omega$ ~51KΩ
	GND	Ananog	Internal isolation from COMThe factory PE and GND
	OND	ground	safety capacitors are OFF by default.
A I			Input voltage:0~10V: Impedance 22KΩ, Maximum input voltage
Analog input voltage	Al1	Analog input1	Input current:0~20mA: Impedance 500Ω, Maximum input current
			Through the jumper switch Al1 0 ~ 10V and 0 ~ 20mA analog input switch, the factory default voltage input.
		Analog input	Input voltage:0~10V: Impedance 22KΩ, Maximum input voltage
	Al2	2(Size A Not support)	Input current:0~20mA: Impedance 500Ω, Maximum input current
		очерог ()	Through the jumper switch Al1 0 ~ 10V and 0 ~ 20mA analog input switch, the factory default voltage input.
			Output voltage:0~10V: Impedance ≥10KΩ
			Output current:0~20mA: Impedance 200Ω~500Ω
Analog AO output	AO	Analog output	Through the jumper switch AO1 0 ~ 10V and 0 ~ 20mA analog output switching, the factory default voltage output.
	GND		Internal isolation from COM
			24V±10%, Internal isolation from GND
		+24V	Maximum output current: 200mA
	+24V	power(size A	To provide 24V power supply, generally used as a
		not support)	digital input and output terminal power supply and external sensor power
	СОМ	+24V ground (size A not support)	Internal isolation from GND
Switch input		Digital input	Optocoupler isolation, compatible with bipolar input
	DI1~DI4	terminal 1~4	Frequency range: 0~200Hz
		John Mari 4	Voltage range: 10V~30V
		Digital input	Digital input terminal: same as DI1~DI4
		terminal	Pulse input frequency input: 0~50KHz
	HDI	/High-speed pulse	Voltage range: 10V~30V
		input(size A not support)	J :g
Switch		Open	Optocoupler isolation
output	DO1	collector	Voltage range: 0V~24V
σαιραι		output	Current range: 0mA ~50mA

Туре	Terminal	Terminal	Terminal function description		
	Symbol	Name			
		Open	Open collector output: same as DO1		
		collector			
	HDO	output(size A)	High-speed pulse output: 0~50KHz		
		/High-speed	nigh-speed pulse output: 0~50KHZ		
		pulse output			
Bolov output	ay output TA/TB/TC				TA-TB: nomal close (Size A support NC only)
Aeiay output		Relay output	TA-T1C: nomal open		
ı			Contact rating: AC 250V, 3A; DC 30V, 1A		
			485 Positive		
	485+	differential	Baud rate:		
10E nort	10 <i>E</i>	signal			
485 port	485 Negative	1200/2400/4800/9600/19200/38400/57600/115200bps(default to Factory default no matching resistor(off)			
	485-	differential	default to Factory default no matching resistor(oil)		
		signal			

♦Switch input terminal instructions

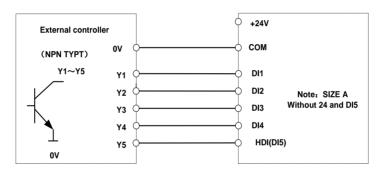
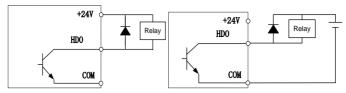



Figure 3-8 Wiring diagram of the digital input terminal

note:

- 1. If the external controller output is a relay contact, the "0V" or "VCC" of the external controller in the above figure can be considered as the common end of the relay.
- 2. This drive only supports one connection method.

Description of the digital output terminal The multi-function output terminals DO1 and HDO can be powered by the internal +24V power supply of the inverter or an external power supply. The wiring diagram is as follows:

A. Use internal power

B、Use external power

Figure 3-9 Wiring diagram of the switch output terminal

Note:

The multi-function terminal output is open collector output, and the maximum allowable current is 50mA. When using the internal power supply, if driving an inductive load, add an absorption circuit, such as an RC snubber circuit or a freewheeling diode. When adding a freewheeling diode, be sure to confirm the polarity of the diode, otherwise it will damage the product; For external power supply, connect the negative terminal of the external power supply to the COM terminal.

Chapter 4 Operation and display

4.1 LED Instruction of operation and display

LED keyboard consists of 5 digital tubes, 7 lights, 8 keys and a potentiometer; can be used to set the parameters, status monitoring and operation control, LED keyboard shape as shown in Figure 4-1:

Figure 4-1 Operating panel

Description of indicator

Table 4-1 The name and function of each part of the keyboard

No.	Part	Name	Function
1	ESC	Exit	• exit menu level
2		Confirmation	Enter the menu interfaces level by level,
	ENT		confirm the parameter setting and save to EEPROM
			The number indicated by the cursor increases by one.
3		Increment/I In	Next function code.
3		increment/op	Used to switch the left and right screens while in monitor
			mode
4	∇	Dooromont/Down	·The number indicated by the cursor minus one.
4		Decrement/Down	The previous function code.
			Cursor shift.
6	>>	Shift	Monitor Status Displays the next monitor volume.
		Confirmation • Enter the menu in experiment/Up • Confirm the parameter of the number indication code experiment/Up • Next function code experiment/Down • Used to switch the mode • The number indication experiment/Down • The previous function experiment/Down • Cursor shift. • Monitor Status Disting experiment/Down • Switch left and right experiment/Down Start the frequency mode • During operation, parameter 21.03).	Switch left and right screens.
7	RUN	Dun	Start the frequency inverter in the operation panel control
1	KON	Kuli	mode
			During operation, press to stop the operation (restricted by
8	STOP	Stop/Reset	parameter 21.03).
		Otop/1000t	In fault status, press this key to reset the fault.

9	Hz	Indicator light:Hz	·Always light: Hz ·flicker: Rpm
10	A	Indicator light:A	·Indicate the digital display unit, all three lights off menas
11	V	Indicator light:V	other units
			Off: indicates a stop condition.
12	12	Running lights	On: indicates inverter is running.
			Blinking: Deceleration stopped.
			Used to indicate the sign of the variable when the LED is
13	REV	Direction indicator	displaying one of the variables listed in 27.02;
13	REV	Direction indicator	In other cases the sign of the output frequency is
			indicated.
15	• ST	STOP	When it is lit, it indicates that the inverter is faulty.

♦ 4-2 Keyboard operation diagram

♦ Standard mode (-bSC-)

If visiting access (P00.01) is standard, all the function codes mentioned in this manual are accessible.

If visiting access (P00.01) is the end user (in the state of user password lock), then only some function code can be accessed.

◆ User-difined mode (-USr-)

In this menu mode, only 20 user-defined parameters defined are displayed.

♦ Verify mode (-vrF-)

In this menu mode, only parameters that differ from the factory settings are displayed.

◆ Guide mode (-GdE-)

When users first use the inverter, can guide the user to complete a simple trial run $_{\circ}$

4.2 Digital tube display

Display of decimal data

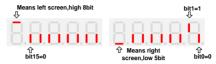
16 digits:

The range of unsigned numbers is $0 \sim 65535$ (without decimal point). The displayed range of signed numbers is -9999 ~ 32767 (excluding decimal point). The negative numbers less than -9999 will be displayed as -9999.

32 digits:

The left and right screen display, combined with the following figure to illustrate:

Dot1 is used to distinguish between the left and right screens. On indicates the left panel (upper 5 digits) and turns off the right screen (lower 5 digits). When the left screen is displayed, Dot5 is used to indicate the sign digit. On indicates that the value is negative, off indicates the value is Positive.


The display range of 32-bit unsigned numbers is 0 to 4294967295 (excluding decimal point), and the displayed range of signed numbers is -2147483648 to 2147483647 (excluding the decimal point).

Binary data display

Binary number currently only supports 16 digits, points left and right screen display.

The leftmost digital tube is used to distinguish the left and right screens: the top digit segment lights up for the left panel and the bottom segment segment lights for the right panel.

Remove the leftmost digital tube, from right to left, followed by Bit0 ~ Bit15. The upper segment is lit to indicate 1,

the lower segment to light to indicate 0.

Display of Hexadecimal data

 The first segment of hexadecimal data displays "H.", and the subsequent 4 segments display the complete hexadecimal number, as shown in the figure below 0xE1AB=57771

Parameter attribute identification

Editable parameters The leftmost LED displays "P"; the leftmost LED of the read-only parameter displays "r", as shown below.

♦ Specific symbol

In some cases, the digital tube will display a specific symbol. The meaning of specific symbols is shown in the following table: Table4-2 Digital tube display symbol and meaning

Symbol	Meaning
tUnE	Motor parameter self-learning
bUSY	Processing parameter read and write requests
	Indicates that the parameters have been changed
End	and saved to the EEPROM
	The mission has been completed
Er.xxx	• Fault code, "XXX" is the fault type, see Chapter 6 for
⊏I.XXX	details

Chapter 5 Function Code Table

The following is the VFD500M parameter distribution list:

Classification	Parameter group	Page
	00:Basic function	Page 22
	01:Frequency source selection	Page24
	02:Start and stop	Page 29
	03:Ramp and S curve	Page 31
	04: Analog and pulse input	Page 33
	05:Analog and pulse output	Page 36
Common	06:Multi-function Digital input (DI)	Page 37
parameters	07: Multi-function Digital output(DO)	Page 40
	08:Digital Output setting	Page 42
	11:Motor1 parmeter	Page 44
	12:Motor1 VFcontrol parameter	Page 46
	13:Motor1 Vector controlparameter	Page 49
	14:Torque control	Page 50
	16:Energy saving control	Page 51
	20:User-defined parameters	Page 52
	21:Keypad and display	Page 53
	22:AC Drive configuration	Page 55
Display and	23:Drive protection function setting	Page 57
protection	24:Motor protection parameter	Page 60
	25:Fault tracking parameter	Page 62
	26:Fault recording parameter	Page 62
	27:Monitoring parameter	Page 64
Communication	30:Modbus communication	Page 65
	40:Process PID Function	Page 67
	41:Sleep function	Page 71
Application	42:Simple PLC	Page 72
Application	43:Programmable delay unit	Page 74
	44:Comparator and logic unit/controller	Page 76
	45:Multifunction counter	Page 80
	60:Motor2 basic parameter	Page 82
Motor 2	61:Motor2 parameter	Page 82
IVIOLOI Z	62:Motor2 VF control parameter	Page 82
	63:Motor2 vector control parameter	Page 82

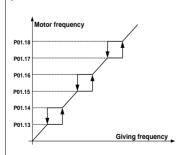
Term Description:

The parameter is also called function code; the operation panel is also called the keyboard.

Due to usage habits, different terms may be used in different places in this manual, but all refer to the same content.

Symbol Description:

- "🌣" means that the setting value of this parameter can be changed when the inverter is stopped or running.
- "★" means that the setting value of this parameter can not be changed when the inverter is running.
- "•" indicates that the value of this parameter is the actual test record value, which can not be changed


Function code	Parameter name	Description	Default	Property			
	00Group Basic Function						
P00.00	0 ~ 65535 No user password status (P00.01 = 1 after power-on): Entering the same non-zero value twice in succession sets a user password and enters lockout. Value password Password lock state: Enter the password to enter the unlock state. Unlocked state: Enter the original password to enter the lock state; enter the same value twice in a row to change the password (clear the password if you enter 0 twice in a row).		0	ź			
P00.01	Access authority	O: END USER Some parameter are not authorized to check when user password in locked state 1: Standard ALL Parameter can be checked	1	*			
P00.03	RESET	NO ACTION Restore default parameter except for motor parameter and auto-tune related parameter and factory parameter Restore default to factory parameter Clear tripping record	0	*			
P00.04	Motor Control mode	O: VF 1: SVC(sensorless vector control) > Open loop vector and torque controlwithout encoder feedback	0	*			
P00.05	Running mode	O: Speed mode 1: Torque mode If use with DI function,19:Switch between torque and speed Control and 20: torque control diabled. Actuall effective running mode is related with DI status	0	*			
P00.06	Source of the Operation Command	0: keypad 1: terminal 2: communication Command source: run、stop、forward、reverse、jog、fast brake stop.etc If use with DI function, 12: Switching run command to Keypad and 13: Switching run command to Communication,Actual effective command source is related with	0	*			

Function	Parameter name	Description	Default	Property
code				
		DI status		
P00.07	Numeric frequency	' ' '		☆
F00.07	setting			×
		0: Forward		
		1: Reverse		
		> It is only for keypad control to change		
		running direction by giving frequency		
P00.08	Rotation direction	symbol to be reverse)If command by	0	☆
F 00.00	Rotation direction	keypad/terminal /communication,and not	0	~
		want to achieve reverse running by		
		giving frequency symbol to be		
		reverse,need to change P22.13 in stop		
		mode(see parameter P22.13)		
P00.09	00.09 Reverse control	0: enable	0	*
1 00.03	Neverse control	1: disbale	· ·	^
		0: motor 1		
	Motor option	1: motor 2		
P00.10		If use with DI function,16:Switch between	0	*
		motor 1 and motor 2,Actuall effective		
		command source is related with DI status		
P00.11	Special industry	0: Standard drive	0	*
	oposiai inaasii y	1: Reserved		^
r00.18	Power board software	_	_	
	version			
r00.19	Control board software	_	_	
	version			
r00.21	SN 1	-	-	•
r00.22	SN 2	-	-	•

Functio n code	Parameter name	Description	Default	Property
	01Gr	oup frequency source selction		
P01.00	Main frequency source selection (A) Main frequency source selection (A) Main frequency source 5: HDI 6: multi-step speed 7: communication 8: PID 9: Internal PLC 10:Potentiometer Notice:DI terminal function code 26-32 superior than this function code		10	*
P01.01	Auxiliary frequency source selection (B)	Same as P01.00 Notice:DI terminal function code 33 superior than this function code	0	*
P01.02	Reference option for auxiliary frequency source	Relative to Maximum frequency Relative to main frequency	0	*
P01.03	Auxiliary frequency gains	0.0~300.0	100.0%	☆
P01.04	Frequency source selection	0: main frequency sourceA 1: auxiliary frequency sourceB 2: Main and auxiliary arithmetic results 3: Switchover between main and auxiliary frequency 4: switchover between main frequency source A and A+B Arithmetic results 5: Switchover between B and (A+B) (*) DI function code 25 effective to corresponding terminal ,frequency will adopt the latter	0	*
P01.05	Main and Auxiliary arithmetic	O: A+B 1: A-B 2: The bigger of main A and Auxliary B 3: The smaller of Main A and Auxiliary B 4: A*B	0	*
P01.06	Maximum frequency	10.00~600.00Hz	50.00Hz	*
P01.07	Upper limit frequency control	0: digital setting (set through P01.08) 1: Al1 2: Al2 3: Reserved 4: Reserved 5: Pulse setting HDI	0	*

Functio n code	Parameter name	Description	Default	Property
		6: Reserved 7: Communication setting 8: Reserved		
		9: Reserved 10: Potentiometer		
P01.08	Upper limit frequency	Lower limit frequency(P01.09)~maximum frequency (P01.06)	50.00Hz	☆
P01.09	Lower limit frequency	0.00Hz∼upper limit frequency	0.00Hz	☆
P01.10	Action when set frequency lower than lower limit frequency	O: Run at low limit frequency 1: Stop after delaying P01.11 2: Run at zero speed	0	*
P01.11	Delay time when set frequency lower than lower limit frequency	0.000s~30.000s	0.000s	*
P01.12	Jump frequency start up protection	Unit/ten/hundred'digit: three jump frequency 1/2/3 0: Disable 1: Enable (avoid risk speed)	000	☆
P01.13	Jump frequency 1 lower limit	0.00Hz~(P01.14)	0.00Hz	☆
P01.14	Jump frequency upper limit	P01.13- (P01.06)Maximum frequency	0.00Hz	☆
P01.15	Jump frequency 2 lower limit	0.00Hz~(P01.16)	0.00Hz	☆
P01.16	Jump frequency 2 upper limit	P01.15~maximum frequency(P01.06)	0.00Hz	☆
P01.17	Jump frequency 3 lower	0.00Hz~(P01.18)	0.00Hz	☆
P01.18	Jump frequency 3 upper limit	P01.17~maximum frequency(P01.06)	0.00Hz	☆

Risk speed or Jump frequency start up protection is used to some situation which need avoid motor speed and speed range, for example, due to mechanical resonance, P01.12 will be enabled to avoide risk speed in forward or reverse mode

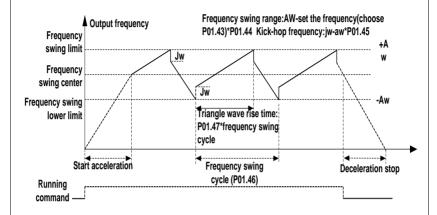
Functio n code	Parameter name	Description	Default	Property
P01.19	Multi-step speed reference source	Unit'digit: 0 phase reference source set by 0-multi-step speed(P01.21) 1-preset frequency (P00.07) 2:Al1 3:Al2 4:Reserved 5:Reserved 6:HDI pulse 7:Communication 8:PID Ten's digit: Combination of multiple speed 0: Combination methord 1: Priority method	00	*

Combination method Description:

metriod Description.					
Multispeed	Multispeed	Multispeed	Multispeed	Combination method	
terminal 4	terminal 3	terminal 2	terminal 1	Speed reference	
Ineffective	Ineffective	Ineffective	Ineffective	Multispeed 0	
Ineffective	Ineffective	Ineffective	effective	Multispeed 1	
Ineffective	Ineffective	effective	Ineffective	Multispeed 2	
Ineffective	Ineffective	effective	effective	Multispeed 3	
Ineffective	effective	Ineffective	Ineffective	Multispeed 4	
Ineffective	effective	Ineffective	effective	Multispeed 5	
Ineffective	effective	effective	Ineffective	Multispeed 6	
Ineffective	effective	effective	effective	Multispeed 7	
effective	Ineffective	Ineffective	Ineffective	Multispeed 8	
effective	Ineffective	Ineffective	effective	Multispeed 9	
effective	Ineffective	effective	Ineffective	Multispeed 10	
effective	Ineffective	effective	effective	Multispeed 11	
effective	effective	Ineffective	Ineffective	Multispeed 12	
effective	effective	Ineffective	effective	Multispeed 13	
effective	effective	effective	Ineffective	Multispeed 14	
effective	effective	effective	effective	Multispeed 15	

Priority method Description:

Multispeed	Multispeed	Multispeed	Multispeed	Priority method Speed
terminal 4	terminal 3	terminal 2	terminal 1	reference
Ineffective	Ineffective	Ineffective	Ineffective	Multispeed 0
Ineffective	Ineffective	Ineffective	effective	Multispeed 1
Ineffective	Ineffective	effective	random	Multispeed 2
Ineffective	effective	random	random	Multispeed 3
effective	random	random	random	Multispeed 4


P01.20 Multiple step speed Bit0 \sim 15 corresponding to 0 \sim 15 phase 0 \Leftrightarrow

Functio n code	Parameter name	Description	Default	Property
11 COUC	Rotation direction	direction		
	Totation direction	0:forward direction 1:reverse direction		
	Multiple step speed 0/in-	Lower limit frequency (P01.09) ~ maximum		
P01.21	built plc 1	frequency (P01.06)	0.00Hz	☆
	Multiple step speed 1/in-	Lower limit frequency(P01.09) ~ maximum		
P01.22	built plc 2	frequency(P01.06)	0.00Hz	☆
	Multiplestep speed 2/in-	Lower limit frequency(P01.09) ~ maximum		
P01.23	built plc 3	frequency(P01.06)	0.00Hz	☆
	Multiple step speed 3/in-	Lower limit frequency(P01.09) ~ maximum		
P01.24	built plc 4	frequency(P01.06)	0.00Hz	☆
	Multiple step speed 4/in-	Lower limit frequency(P01.09) ~ maximum		
P01.25	built plc 5	frequency(P01.06)	0.00Hz	☆
	Multiple-step speed 5/in-	Lower limit frequency(P01.09) ~ maximum		
P01.26	built plc 6	frequency(P01.06)	0.00Hz	☆
	Multiple step speed 6/in-	Lower limit frequency(P01.09) ~ maximum		
P01.27	built plc 7	frequency(P01.06)	0.00Hz	☆
	Multiple step speed 7/in-	Lower limit frequency(P01.09) ~ maximum		
P01.28	built plc 8	frequency(P01.06)	0.00Hz	☆
D04.00	Multiple step speed 8/in-	Lower limit frequency(P01.09) ~ maximum	0.0011	
P01.29	built plc 9	frequency(P01.06)	0.00Hz	☆
	Marking and a second Office	Lower limit frequency(P01.09) ~ maximum		
P01.30	Multiple step speed 9/in-	frequency(P01.06)	0.00Hz	☆
	built plc 10			
P01.31	Multiple step speed	Lower limit frequency(P01.09) \sim maximum	0.00Hz	Λ,
P01.31	10/in-built plc 11	frequency(P01.06)	0.00HZ	☆
P01.32	Multiple step speed	Lower limit frequency(P01.09) \sim maximum	0.00Hz	☆
1 01.32	11/in-built plc 12	frequency(P01.06)	0.00112	~
P01.33	Multiple step speed	Lower limit frequency(P01.09)∼maximum	0.00Hz	☆
1 01.00	12/in-built plc 13	frequency(P01.06)	0.00112	^
P01.34	Multiple step speed	Lower limit frequency(P01.09)~maximum	0.00Hz	☆
1 01.04	13/in-built plc 14	frequency(P01.06)	0.00112	^
P01.35	Multiple step speed	Lower limit frequency(P01.09)∼maximum	0.00Hz	☆
. 01.00	14/in-built plc 15	frequency(P01.06)	0.001.12	^
P01.36	Multiple step speed	Lower limit frequency(P01.09)∼maximum	0.00Hz	☆
	15/in-built plc 16	frequency(P01.06)		
P01.37	Jog frequency	0.00Hz~maximum frequency(P01.06)	5.00Hz	☆
P01.38	Jog command when	0: not responsive	0	*
	running	1: responsive		
P01.39	UP/DOWN rates	0.00(auto rates)~600.00Hz/s	1.00Hz/s	☆
		Unit'digit:		
		0: Zero clearing in non-running		
P01.40	UP/DOWN Control	1: Zero clearning when UP/DOWN command	000	*
		not effective		
		2: Not zero cleaning (decide by remembering		

Functio n code	Parameter name	Description	Default	Property
		digit when power failure		
		Ten's digit:		
		0: Non-zero cleaning at power failure		
		1:Save at power failure UP/DOWN offset		
		Hundred's digit: UP/DOWN near to zero		
		0: Forbidden		
		1:Enable		
		0.00~1.00		
		Rotation speed drop value based on Rated		
P01.41	Droop control gains	load (relative to maximum frequency)	0.00	☆
		Frequency drop volume:Max		
		frequency*P01.41*Current load/rated load		
P01.42	Droop control filtering time	0.000s~10.000s	0.050s	☆
		0: relative to center of textile frequency		
P01.43	Textile frequency setting	1: relative to maximum frequency	0	☆
		0.0%~100% relative to center of textile		
		frequency P01.43 = 0Textile frequency Aw =		
P01.44	Textile frequency	P01.44 * center frequency	0.0%	☆
		P01.43 = 1: Textile frequency Aw = P01.44 *		
		max frequency		
P01.45	Jump frequency	0.0%~50.0% relative to textile frequency	0.0%	☆
P01.46	Textile period	0.1s~3000.0s	10.0s	☆
P01.47	Triangle wave rising time coeffcient	0.1%~100.0% relative to textile period	50.0%	☆
P01.48	Auxiliary frequency effective threshold	When the main frequency ≥ this setting, the auxiliary frequency will be activated.	0.00HZ	☆

Functio	Parameter name	Description	Default	Property
n code				

This function is mostly used in textile and chemical industry and some application such as traversing and winding so it is used for balancing the workload allocation when multiple motors are used to drive the same load. The output frequency of the frequency inverters decreases as the load increases. You can reduce the workload of the motor under load by decreasing the output frequency for this motor, implementing workload balancing among multiple motors.P01.46 or P01.46=0.This function disable

Function code	Parameter name	Description	Default	Property
	02 (Group Start and stop Control		
P02.00	Starting mode	O: Direct start Inverter will start from P02.01,After P02.02,It will go to setting frequency as per S curve 1: Speed tracking/Searching Inverter will do search for motor speed and recognize and accelerate and decelerate to setting frequency.See Parameter P02.16-P02.19	0	*
P02.01	Startup frequency	0.00Hz~10.00Hz	0.00Hz	*
P02.02	Startup frequency holding time	0.000s~10.000s	0.000s	*
P02.03	Quick-response excitation	O: Disable 1: Enable Set 1= enable it will automatically calculate pre-exciation current P02.04 and pre-excitaton time ,after finishing calculation,this parameter will reset to 0	0	*
P02.04	Pre-excitation current	0%~200% motor rated current	Depend	*
P02.05	Pre-excitation time	0.00s~10.00s Pre-excitation enable Asynchronous motor for magnetic field for higher starting torque	Depend	*
P02.06	DC brake current at start-up	0~100% motor rated current	100%	☆
P02.07	DC brake time at start- up	0.000s~30.000s	0.000s	*
P02.08	Stop method	O: Ramp to stop 1: Free coast to stop	0	☆
P02.09	Startup frequency of DC brake at stop	0.00Hz~50.00Hz	1.00Hz	*
P02.10	DC braking current at stop	$0{\sim}100\%$ motor rated current(Maximum value not higher than drive rated current)	100%	☆
P02.11	DC brake time at stop	0.000s~30.000s	0.000s	*
P02.12	Magnetic flux brake gain	1.00~1.50 Over excitation braking convert some kinetic energy to motor heating by increasing motor excitation.value 1 means ineffective: value higher,better performance but output current bigger	1.00	*
P02.13	Delaying frequency at stop	0.00Hz~20.00Hz	0.50Hz	*
P02.14	Delaying time at stop	0.000s~60.000s 0.000s:no function for delaying time at stop >0.000s:it is effective,when output frequency	0.000s	*

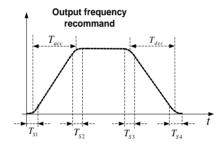
Function	Parameter name	Description	Default	Property
code				
		decrease lower than delaying frequency at stop		
		(P02.13),inverter will block pulse output after		
		delaying time at stop (P02.14).if run command		
		comes during delaying time,inverter will		
		restart.it is useful to some application with jog		
		function		
P02.15	The minimum blocking	0.010s~30.000s	Donon	_
P02.15	time after free stop	0.010s~30.000s	Depend	*
	Speed search mode	Unit's digit: tracking mode		
		0: speed search for maximum output frequency		
		1: speed search for frequency at stop	10	
		2: speed search for grid frequency		
P02.16		Ten's digit: direction choosing		*
		0: only search at given frequency direction		
		1: search on the other direction when failed for		
		given frequency tracking		
P02 17	Deceleration time for	0.45 00.05	2.0-	
P02.17	speed search	0.1s∼20.0s	2.0s	*
P02.18	Current for speed	10%~150% motor rated current	40%	_
FUZ.10	search	10 /0: - 130 /0 motor fated current	40%	*
P02.19	Speed search	0.00~10.00	1.00	*
P02.19	compensation factor	0.00* - 10.00	1.00	*

Function code	Parameter name	Description	Default	Property		
	03 Group Ramp and S curve					
	Acceleration and	0: linear				
P03.00	deceleration	1: S curve A	0	*		
	curve selection	2: S curve B				

Acceleration and deceleration curve, also known as "Ramp Frequency Generator (RFG)", is used to smooth the frequency command. VFD500M supports the following acceleration and deceleration curve:

0: linear acceleration / deceleration

The output changes at a constant acceleration or deceleration. Acceleration time refers to the time from when the inverter accelerates from zero to the reference frequency (selected by P03.15); deceleration time refers to the time required to decelerate from the reference frequency to zero.


1: S curve method

This acceleration and deceleration curve acceleration "a" changes in a ramp, start and stop relatively flat. Acceleration and deceleration process as shown below, Tacc and Tdec for the set acceleration and deceleration time.

The acceleration and deceleration curve of the equivalent acceleration and deceleration time:

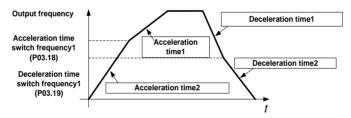
Acceleration time = Tacc + (Ts1 + Ts2) / 2

Deceleration time = Tdec + (Ts3 + Ts4) / 2

2: S curve method B

The time of this S-curve is defined as in the method A except that in the acceleration / deceleration process, if the target frequency suddenly approaches or the acceleration / deceleration time changes, the S-curve is re-planned. In addition, when the target frequency changes, the S Curves avoid "overshoot" as much as possible.

		Setting value depend on P03.16			
P03.01	A 1 4 4 4	P03.16 = 2, 0.00~600.00s;	Depend	☆	
F03.01	Acceleration time 1	P03.16 = 1, 0.0s~6000.0s;	on model	×	
		P03.16 = 0, 0s∼60000s			
		Setting value depend on P03.16			
P03.02	Deceleration time 1	P03.16 = 2, 0.00~600.00s;	Depend		
P03.02		P03.16 = 1, 0.0s~6000.0s;	on model	☆	
		P03.16 = 0, 0s∼60000s			
P03.03	Accelerationtime2	0.01∼60000s same as P03.01	Depend	☆	
P03.03	Accelerationtime2	0.017 600000s same as P05.01	on model	×	
D02.04	Deceleration time2	0.04	Depend	☆	
P03.04		0.01~60000s same as P03.02	on model	×	
D02.0E	Acceleration time3	0.04	Depend	☆	
P03.05	Acceleration times	0.01~60000s same as P03.01	on model	ਮ	


Function code	Parameter name	Description		Property
P03.06	Deceleration time3	0.01~60000s same as P03.02	Depend on model	☆
P03.07	Acceleration time4	0.01~60000s same as P03.01	Depend on model	☆
P03.08	Deceleration time4	0.01~60000s same as P03.02	Depend on model	☆

The VFD500M provides four groups of acceleration and deceleration time. The actual acceleration / deceleration time can be selected by different methods such as DI terminal, output frequency and PLC running segments. Several methods can not be used at the same time. Factory default is to use acceleration / deceleration time

1.DI terminal select acceleration and deceleration time of the mapping table is as follows::

Acceleration and	Acceleration and	Acceleration and deceleration time
deceleration time	deceleration time	terminal
terminal 2	terminal 1	
OFF	OFF	Acceleration and deceleration time
		terminal 1 (P03.01,P03.02)
OFF	ON	Acceleration and deceleration time
		terminal 2 (P03.03,P03.04)
ON	OFF	Acceleration and deceleration time
		terminal 3 (P03.05,P03.06)
ON	ON	Acceleration and deceleration time
		terminal 4 (P03.07,P03.08)

The schematic diagram of selecting acceleration / deceleration time according to the output frequency is as follows:

Other ways to select acceleration / deceleration time can be found in the description of relevant parameters of

P03.09	Jog Acceleration time	Time Setting same as P03.01	6.00s	☆
P03.10	Jog Deceleration time	Time Setting same as P03.02	10.00s	☆
P03.11	S-curve Acceleration begin time	Setting value depend on P03.16 P03.16 = 2, 0.01~30.00s; P03.16 = 1, 0.1s~300.0s; P03.16 = 0, 1s~3000s	0.50s	☆
P03.12	S-curve Acceleration arrival time	SAME AS P03.11	0.50s	☆
P03.13	S-curve Deceleration	SAME AS P03.11	0.50s	☆

Function	Parameter	Description	Default	Property
code	name	·		. ,
	begin time			
	S-curve			
P03.14	Deceleration	SAME AS P03.11		☆
	Arrival time			
	Accel and			
500.45	Deceltime	maximum frequency Motor rated frequency		
P03.15	frequency			*
	benchmark			
	Accel and Decel	0: 1s		
P03.16	time unit selection	1: 0.1s	2	*
	time unit selection	2: 0.01s		
P03.17	Quickstop	0.01∼65000s	5.00s	☆
1 00.17	deceleration time	0.01 000003	0.003	^
	Switchingfrequency			
P03.18	1 in acceleration	0.00Hz \sim maximum frequency(P01.06)	0.00Hz	☆
	time			
	Switchingfrequency			
P03.19	1 in deceleration	0.00Hz~maximum frequency(P01.06)	0.00Hz	☆
	time			
P03.20	Forward/reverse	0.00s~30.00s Waiting time for zero speed during forward and	0.00s	*
	Dead band time	reverse switchover		
		04 Group Analog and Pulse input		I
	Minimum input	0.00kHz~		
P04.00	pulse frequency		1.00kHz	☆
	pulse frequency	50.00kHz P04.03		
	Maximum input	0.00kHz~		
P04.01	pulse frequency	50.00kHz P04.02	30.00kHz	☆
	Setting	P04.00 P04.01		
P04.02	Corresponding to	-100.0% ~ HDI input frequency	0.0%	☆
	Minimum input	100.0%		
	Setting			
P04.03	Corresponding to	-100.0%~	100.0%	☆
	maximum input	100.0%		
504.04	Pulse input filter	0.000 40.000	0.050	
P04.04	time	0.000s~10.000s	0.050s	☆
r04.05	Pluse input	0.00kHz~50.00kHz(it is used to check HDI pulse input		_
r04.05	frequency	frequency)	-	•
r04.06	HDI equivalent	-100.0%~100.0%(it is used to View the output of the HDI		_
104.00	value	mapping curve)		•
		Unit's: Al curve selection		
P04.07	Al 1 Curve setting	0: curve A	00	+
FU4.U1	, i Gai ve setting	1: curve B	30	_ ^
		2: Curve C		

Function	Parameter		Description	Default	Property
code	name				
		3: Curve D			
			hen input signal lower than minimum input		
		· ·	minimum input		
		1: equal to	0.0%		
P04.08	Al1 filter time	0.000s~10	.000s	0.100s	☆
		0.00V~10.0	00V (it is used to view the port voltage of Al1. When		
r04.09	Al 1 actual value	Al1 is a curr	rent type (0~20mA) input, multiplying this value by 2	-	•
		is the input	current (mA) of the AI1 port.)		
r04.10	Al 1 Conversion	-100.0%~1	00.0%(It is used to view the output of the AI1		
104.10	value	mapped cur	ve)	-	
		Unit's: Al c	urve selection		
		0: curve A			
		1: curve B			
P04.11	Al 2 Curve setting	2: Curve C		01	_
P04.11	At 2 Curve setting	3: Curve D		01	*
		Ten'unit: when input signal lower than minimum input			
		0: equal to minimum input			
		1: equal to	0.0%		
P04.12	Al2 filter time	0.000s~10	.000s	0.100s	☆
		0.00V~10.00V (it is used to view the port voltage of Al2. When			
r04.13	Al 2 actual value	Al2 is a current type (0~20mA) input, multiplying this value by 2		-	•
		is the input	the input current (mA) of the AI2 port.)		
r04.14	Al 2 Conversion	-100.0%~100.0%(It is used to view the output of the AI2		_	
104.14	value	mapped curve)		_	
P04.23	Curve A horizontal axis 1	0.00V~ P04.25	Correspondia g setting P04.2	0.00V	☆
P04.24	Curve Avertical axis 1	-100.0%~ 100.0%	P04.2	0.0%	☆
P04.25	Curve A horizontal	P04.23~	⁴ P04.2 P04.25 AI	10.00V	☆
1 04.20	axis 2	10.00V	Note:Input less than P04.23,output	10.00 V	И
P04.26	Curve A vertical axis 2	-100.0%~ 100.0%	decided by curve ten's digit	100.0%	☆
P04.27	Curve B horizontal axis 1	0.00V~ P04.29		0.00V	☆

Function code	Parameter name		Description	Default	Property
P04.28	Curve B vertical axis 1	-100.0%~ 100.0%	Correspondi ng setting ▲	0.0%	☆
P04.29	Curve B horizontal axis 2	P04.27~ 10.00V	P04.30	10.00V	☆
P04.30	Curve B vertical axis 2	-100.0%~ 100.0%	P04.28 P04.27 P04.29 Note:Input less than P04.27,output decide by curve ten's digit	100.0%	☆
P04.31	Curve C horizontal axis 1	0.00V∼ P04.33		0.00V	☆
P04.32	Curve C vertical axis 1	-100.0%~ 100.0%	Corresponding setting	0.0%	☆
P04.33	Curve C horizontal axis 2	P04.31~ P04.35	P04.38	3.00V	☆
P04.34	Curve C vertical axis 2	-100.0%~ 100.0%	P04.36	30.0%	☆
P04.35	Curve C horizontal axis 3	P04.33~ P04.37	P04.34 P04.32	6.00V	☆
P04.36	Curve C vertical axis 3	-100.0%~ 100.0%	P04.31 P04.33 P04.35 P04.37 Al	60.0%	☆
P04.37	Curve C horizontal axis 4	P04.35~ 10.00V	Note:Input less than P04.31,output	10.00V	☆
P04.38	Curve C vertical axis 4	-100.0%~ 100.0%	decided by curve ten's digit	100.0%	☆
P04.39	Curve D horizontal axis 1	0.00V∼ P04.41	Corresponding setting	0.00V	☆
P04.40	Curve D vertical axis 1	-100.0%~ 100.0%		0.0%	☆
P04.41	Curve D horizontal axis 2	P04.39~ P04.43	P04.46	3.00V	☆
P04.42	Curve D vertical axis 2	-100.0%~ 100.0%	P04.44	30.0%	☆
P04.43	Curve D horizontal axis 3	P04.41~ P04.45	P04.40 P04.40 P04.45 Al	6.00V	☆
P04.44	Curve D vertical axis 3	-100.0%~ 100.0%	P04.39 P04.41 P04.43 P04.45 Al Note:Input less than P04.39,output	60.0%	☆
P04.45	Curve D horizontal axis 4	P04.43~ 10.00V	decided by curve ten's digit	10.00V	☆

Function code	Parameter name		Description		Property
P04.46	Curve D vertical	-100.0%~		100.0%	-√-
	axis 4	100.0%		100.076	☆

Description: The range of HDI, Al1 ~ Al4 mapping curve:

- For frequency setting, 100% corresponds to the maximum frequency P01.06.
- For torque setting, 100% corresponds to the maximum torque P14.02.
- For other uses, see the description of the relevant function.

05 Group Analog and Pulse output					
-05.00	Actual output Pulse	0.00kHz~50.00kHz			
r05.00	frequency	0.00kH2~50.00kH2	-	•	
P05.01	HDO Pulso Output typo	0: Common numeric output (DO2 P07.02)	0	☆	
P05.01	HDO Pulse Output type	1: high frequency pulse output (Hdo)	U	X	
		0: Running frequency (0~max frequency)			
		1: Set frequency (0~max frequency)			
		2: output current (0~2times motor rated			
		current)			
		3: output torque(0~3times motor rated torque)			
		4: set torque(0∼3times motor rated torque)			
		5: output voltage (0∼2times motor rated			
		voltage)			
P05.02	High frequency pulse	6: DC bus voltage (0∼2times drives standard	0	☆	
1 03.02	output function(HDO)	DC bus voltage)		A	
		7: output power (0~2times motor rated			
		power)			
		8:encoder rotating speed(0-maximum			
		frequency rotating speed)			
		9: Al1 (0.00~10.00V)			
		10: Al2 (0.00~10.00V)			
		11: Al1 (0.00~10.00V)			
		12: Al2 (0.00~10.00V)			
	HDO Minimum output	0.00kHz~50.00kHz			
P05.03	pulse frequency	HDO terminal output pulse frequencywhen	1.00kHz	☆	
	paiso iroqueiro,	Output signal source=0			
	HDO Max output pulse	0.00kHz~50.00kHz			
P05.04	frequency	HDO terminal output pulse frequencywhen	30.00kHz	☆	
	oquooy	Output signal source=maximum value			
r05.05	AO1 actual value	0.0%~100.0%	-	•	
P05.06	AO1 output function signal	Same as P05.02	0	☆	
. 00.00	selection		ŭ	^	
P05.07	AO1 output offset	-100.0%~100.0%	0.0%	☆	
P05.08	AO1 output gain	-10.00~10.00	1.00	☆	

The output error of AO1 can be corrected by P05.07 and P05.08, or the mapping relationship between signal source and actual output can be changed. The formula is:

AO.c = P05.07 + P05.08 × AO.pAO.c: the actual output of AO1;

AO.p: AO1 Value before correction and AO.c, AO.p, 100.0% of P05.07 corresponds to 10V or 20mA.

06 Group Multi-function Digital input					
r06.00	DI port status	Bit0~Bit6 Correspond to DI1~DI7 Bit12~Bit15 Correspond to VDI1~VDI4	-	•	
P06.01	DI1 Numeric input function	O: No function 1: Run terminal 2: Reverse/Forward and reverse switchover 3: Three wire control 4: Forward jog command 5: Reverse jog command	1	*	
P06.02	DI2 Numeric input function	6: Terminal UP 7: Terminal DOWN 8: Clear up UP/DOWN offset 9: Coast to stop/free stop	2	*	
P06.03	DI3 Numeric input function	 10: Fault reset 11: Reverse forbidden 12: Switching run command to Keypad 13: Switching run command to Communication 14: fast stop 15: external stop 	4	*	
P06.04	DI4 Numeric input function	16: Switch between motor 1 and motor 2 17: Pause operatoin 18: DC braking 19: Switch between torque and speed Control 20: torque control diabled 21: Multi-step speed terminal 1 22: Multi-step speed terminal2	10	*	
P06.05	DI5(HDI) Numeric input function	23: Multi-step speedterminal3 24: Multi-step speed terminal4 25: frequency source switchover 26: Switch main frequency source to Numeric frequency setting	0	*	
P06.13	VDI1 Numeric input function(Virtural DI)	27: Switch main frequency source to Al1 28: Switch main frequency source to Al2	0	*	
P06.14	VDI2 Numeric input function (Virtural DI)	29: Switch main frequency source to Al3 30: Switch main frequency source to Al4 31: Switch main frequency source to high-frequency pulse input	0	*	
P06.15	VDI3 Numeric input function (Virtural DI)	32: Switch main frequency source to communication setting 33: Switch auxiliary frequency source to numeric frequency setting	0	*	
P06.16	VDI4 Numeric input function (Virtural DI)	34: Accel and Decel time terminal 1 35: Accel and Decel time termina2 36: Accel and Decel Stop 37: User-defined fault 1	0	*	

		T		
		38: User-defined fault 2		
		39: PID pause		
		40: PID integral pause		
		41: PID parameter Switchover		
		42: PID Positive/negative reaction switch		
		43: Preset PID terminal 1		
		44: Preset PID terminal 2		
		45: PID Main and Auxaliary command switch		
		46: PID Main and Auxaliary feedback switch		
		47: Simple PLC status reset		
		48: Simple PLC time stop		
		49: swing frequency stop		
		50: Counter 1 input		
		51: Counter 1 reset/clear		
		52: Counter 2 input		
		53: Counter 2 reset/clear		
		54: Clear/reset timed running time		
		55: Motor 2 Accel and Decel time selection		
		Unit: VDI1 input source		
		0-F: P06.33 specifies the bit0-bit15 of the		
	P06.17 Virtual input source	parameter		
		Tens'DIGIT: VD2 input source		
		0-F: P06.34 bit0-bit15 of the specified parameter		
P06.17		Hundreds'DIGIT: VD3 input source	0003	*
		0-F: P06.35 bit0-bit15 of the specified parameter		
		Thousands: VD3 input source		
		0-F: P06.36 specifies the bit 0-bit15 of the		
		parameter.		
		Define as per bit :disable;1:enable		
		Bit0-bit11:DI1-DI12		
P06.18	DI Forcing function	Bit12-bit15:VDI1-VDI4	H00000000	*
	211 oroning ranionalist	When the bit is enabled, the state of the DI or	L000000000	^
		VDI is set by the corresponding bit of P06.19.		
		Define as per bit 0:effective;1:ineffective		
P06.19	DI Forcing data	Bit0-bit11:DI1-DI12	0	☆
1 00.10	Di i oronig data	Bit12-bit15:VDI1-VDI4	,	~
		Define as per bit 0:positive logic;1:negative logic		
		Bit0-bit11:DI1-DI12		
	Effective logic of	Bit12-bit15:VDI1-VDI4		
P06.20	Numericinput terminal	In the reverse logic, the inactive level of the DI	0	*
	Numerioniput terrinidi	terminal becomes the active level, and the active		
		level becomes the inactive level.		
P06.21	DI1 Effective delay time	0.000s~30.000s	0.000s	☆
P06.21	DI1 ineffective delay time		0.000s 0.000s	☆
P06.22		0.000s~30.000s		
	DI2 Effective delay time	0.000s~30.000s	0.000s	☆
P06.24	DI2 ineffective delay time	0.000s~30.000s	0.000s	☆
P06.25	DI3 Effective delay time	0.000s~30.000s	0.000s	☆

P06.26	DI3 ineffective delay time	0.000s~30.000s	0.000s	☆
P06.27	DI4 Effective delay time	0.000s~30.000s	0.000s	☆
P06.28	DI4 ineffective delay time	0.000s~30.000s	0.000s	☆
		0: 2-wire mode (FWD+REV)1		
P06.29	Two wire/3wire operation	1: 2-wire mode RUN+DIRECTION)2	0	_
P00.29	control	2: 3-wire 1(FWD+REV+ENABLE)	U	*
		3: 3-wire 2 RUN +FWD/REV+ENABLE		

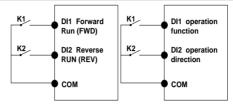


Figure1: Two-line mode 1

Figure 2: Two-line mode2

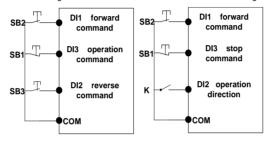


Figure 3: Three-line mode1

Figure 4: Three-line mode2

Two-line mode 1:

K1 is closed, the drive is running forward, K2 closed reverse operation, K1, K2 at the same time closed or disconnected, the inverter stops running.

Two-line mode 2:

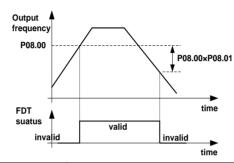
In K1 closed state, K2 disconnect the inverter forward, K2 closed inverter reverse; K1 off the inverter to stop running.

Three-line mode 1:

DI3 is set to three-wire control function. When the SB1 button is closed, press the SB2 button. The inverter is forward running. Press the SB3 button to invert the inverter. When the SB1 button is off, the inverter will stop. During normal start-up and running, it is necessary to keep the SB1 button closed, and the commands of SB2 and SB3 buttons take effect during the closing operation. The running status of the inverter takes the last key action of the three buttons as the standard.

Three-line mode 2:

DI3 is set to three-wire control function. When the SB1 button is closed, press the SB2 button to run the inverter, K to switch the inverter forward, K to close the inverter and SB1 to turn off the inverter. During normal start-up and operation, it is necessary to keep the SB1 button closed and the command of the SB2 button effective during the closing operation.


P06.30	Digital input termimal filtering time	0.000~0.100s	0.010s	☆
P06.31	Terminal protection function	0: no protection	0	*

P06.32	DI terminal on/ready time	When command is terminal ,power on and terminal effective,inverter will run 1: protection When command is terminal ,power on and terminal effective, inverter will not run ,so need terminal ineffective then effective,then inverter will run 0.000s~30.000s	1.000s	*
P06.33	VDI1 source parameter	Select the source of VDI1 and select the input signal of VDI1 together with the unit of P06.17	06.00	*
P06.34	VDI2 source parameter	Select the source of VDI1 and select the input signal of VDI2 together with the unit of P06.17	06.00	*
P06.35	VDI3 source parameter	Select the source of VDI1 and select the input signal of VDI3 together with the unit of P06.17	07.00	*
P06.36	VDI4 source parameter	Select the source of VDI1 and select the input signal of VDI4 together with the unit of P06.17	44.00	*
	07 Gro	up Multi-function Digital output		1
r07.00	DO output port status	Define as per bit, 0:ineffective 1:effective Bit0:DO1 Bit1:D02 Bit2:relay1, Bit 3:relay 2 Bit4: D03;Bit5: DO4 Bit6: DO5; Bit7: DO6 Bit8: VDO1;Bit9: VDO2	-	•
P07.01	Reserved	0:No function 1:READY 2:RUN 3:Error1 (stop fault) 4:Error2 (same as Error1 except undervoltage) 5:Warning output(fault but in running) 6:Swing frequency limit		☆
P07.02	DO2(HDO) Output terminal function group	7:Torque limit 8:Reverse running 9: Upper limit frequency arrival 10:Lower limit frequency arrival 1 11: Lower limit frequency arrival2 12:FDT1 output frequency detection range 13:FDT2 output frequency detection range	0	☆
P07.03	Relay 1 Output terminal function group(TA TB TC)	14:Setting frequency arrival 15:Desired frequency attained 1 P08.05 16:Desired frequency attained 2P08.07 17:Zero speed (stop without output) 18: Zero speed (stop with output) 19:Zero current status	3	☆

P07.09	VDO1(virtual DO1) output Terminal function	20:Output current exceed limit 21:Counter 1 setting value arrival 22:Counter 1 setting value arrival 23:Simple PLC cycle finish	0	☆
P07.10	VDO2(virtual DO2) output Terminal function	24:IGBT temperature arrival 25:Drive overload pre-warning 26: Motor overload pre-warning 27: Motor overleat pre-warning 28:In off loading 29:Accumulated on power time arrival 30:Accumulated running time arrival 31:Single running time arrival 32:Variable selector unit 1 output 33:Variable selector unit 2 output 34:Variable selector unit 4 output 35:Variable selector unit 4 output 36:Logic unit 1 output 37:Logic unit 2 output 38:Logic unit 3 output 40:Delaying unit 4 output 41:Delaying unit 5 output 42: Delaying unit 5 output 43: Delaying unit 6 output 45: Delaying unit 6 output	0	☆
P07.11	Output logic negative	Define as per bit O:off;1:on(negative) Bit0:DO1 Bit1:DO2 Bit2:Relay 1 Bit3: Relay 2 Bit4: DO3;Bit5: DO4 Bit6: DO5; Bit7: DO6 Bit8: VDO1;Bit9: VDO2 Notice:posive logic equivalent to Normal open point And negative logic equivalent to Normal close point	0	☆
P07.14	DO2 effective delay time	0.000s~30.000s	0.000s	☆
P07.15	DO2 ineffective delay time	0.000s~30.000s	0.000s	☆
P07.16	Relay 1 effective delay time	0.000s~30.000s	0.000s	☆
P07.17	Relay 1 ineffective delay time	0.000s~30.000s	0.000s	☆

	08Group Digital output setting				
P08.00	Frequency detection value (FDT1)	0.00Hz~maximum frequency(P01.06)	50.00Hz	☆	
P08.01	Frequency detection hysteresis 1	0.0%~100.0% FDT1	5.0%	☆	
P08.02	Frequency detection value 2(FDT2)	0.00Hz~maximum frequency(P01.06)	50.00Hz	☆	
P08.03	Frequency detection hysteresis 2	0.0%~100.0% FDT2(P08.02)	5.0%	☆	

FDT is used to check inverter output frequency,when output frequency is greater than frequency detection value,FDT effective,when output frequency is less than frequency detection value*(1- Frequency detection hysteresis),FDT ineffective;whenoutput frequency is between the above two,FDT output keep no change,following is FDT chart

		0.0%~100.0% maximum frequency (P01.06)		
P08.04	Detection range of	When output frequency is between command	3.0%	☆
P00.04	frequency arrival	frequency ±P08.04*P01.06,corresponding DO	3.0%	×
		output effective signal		
P08.05	Desired frequency attained 1	0.00Hz~maximum frequency (P01.06)	50.00Hz	☆
P08.06	Any frequency reaching detection amplitude 1	0.0%~100.0% maximum frequency (P01.06)	3.0%	☆
P08.07	Desired frequency attained2	0.00Hz~maximum frequency(P01.06)	50.00Hz	☆
P08.08	Any frequency reaching detection amplitude 2	0.0%~100.0% maximum frequency (P01.06)	3.0%	☆
P08.09	Zero speed detection amplitude	0.00H~5.00Hz	0.25Hz	☆
P08.10	Zero current detection level	0.0%~100.0% rated motor current	5.0%	☆
P08.11	Zero current detection delay time	0.000∼30.000s 0.000∼30.000s Notice: When output current≤P08.10 and endure P08.11 time,corresponding DO output effective signal	0.100s	☆

P08.12	Output overcurrent	0.0%~300.0%	200.0%	☆
1 00.12	threshold	motor rated time	200.070	~
	Overcurrent detection	0.000~30.000sNotice: When output		
P08.13	delay time	current≥P08.12 and endure P08.13	0.100s	☆
		time,corresponding DOoutput effective signal		
P08.16	Setting Running arrival	0∼65530h	0h	☆
P00.10	time(Accumulative)	07-6555011	UII	×
P08.17	Action upon Running	O.C. antimus to minut Cham	0	-A-
	time arrival	0:Continue to run;1:Stop	0	☆

	11 (Group Motor 1 Parameter		
r11.00	Motor type	0: AC asynchronous motor	0	•
P11.02	Motor rated power	O.1kW~800.0kW when power is less than 1kw ,0.75kw set to 0.8 as per round up principle ,0.55kw motor set 0.6 when change motor rated power,AC drive will automatically set other parameter of motor name plate and motor model parameter be careful to use	Depend	*
P11.03	Motor rated voltage	10V~2000V	Depend	*
P11.04	Motor rated current	P11.02<30kW: 0.01A P11.02>=30kW: 0.1A	Depend	*
P11.05	Motor rated frequency	1.00Hz~600.00Hz	50.00Hz	*
P11.06	Motor rated RPM	1~60000rpm	Depend	*
P11.07	Motor rated power factor	0.500~1.000	Depend	*
r11.08	Motor rated torque	Read only,0.1Nm(P11.02<30KW); 1Nm(P11.02>30KW)	-	•
r11.09	Number of motor 1 pairs of pole	Read only,It will auto calculate as per motor rated frequency and rated rotating speed	-	•
P11.10	Auto-tune/self-learning	0: no auto tuning 1: Stationary auto tuning of Asynchronous motor 2: Rotational auto tuning of Asynchronous motor	0	*

1: Stationary auto tuning of Asynchronous motor

When do auto tuning ,motor stationary ,it can get parameter P11.11 ~P11.13.

Static self-learning can not learn all the motor parameters, so the control performance is difficult to achieve the best; if the motor nameplate information is incomplete, or the motor is not a 4-pole 50Hz GB motor, it is recommended to perform "rotation self-learning".

In the case of limited rotation, such as limited travel, limited load (crane), limited running direction, etc., static self-learning is used.

2: Rotatoinal auto tuning of Asynchronous motor

When do auto tuning ,motor first stationary and rotary, ,it can get parameter P11.11~P11.18, as to close loop contro,it can get P10.03 encoder directioin

When rotating self-learning, the motor will rotate forward and the speed can reach 50%~100% of the rated speed. The lighter the load during self-learning, the better the learning effect.

note:

Notice: it can do motor auto tune when command source is keypad

Please self-learn when the motor is cold. Make sure the motor is at rest before learning!

Please confirm that the motor nameplate parameters have been set before self-learning. For closed-loop control, you should also set the encoder parameters!

After setting this parameter, press the "RUN" button on the keyboard, the self-learning will start, and the inverter will stop itself after the self-learning is completed.

P11.11	Stator resistor of	Unit:0.001Ω(P11.02<30kW)	Depend	*

	Asynchronous motor	Unit:0.01mΩ(P11.02>=30kW)		
P11.12	Rotor resistor of	Unit:0.001Ω(P11.02<30kW)	Damand	
	Asychronous motor	Unit:0.01mΩ(P11.02>=30kW)	Depend	*
D44.40	Leakage inductance of	Unit:0.01mH(P11.02<30kW)	Damand	
P11.13	Asychronous motor	Unit:0.001mH(P11.02>=30kW)	Depend	*
D44.44	Mutual inductance of	Unit:0.1mH(P11.02<30kW)	Damand	
P11.14	Asynchronous motor	Unit:0.01mH(P11.02>=30kW)	Depend	*
D44.45	No-load excitation current of	Unit:0.01AP11.02(<30kW)	Damand	
P11.15	Asynchronous motor	Unit:0.1A(P11.02>=30kW)	Depend	*
P11.16	Excitation saturation factor 1	At non rated-excitation status	1.100	*
P11.17	Excitation saturation factor 2	At non rated-excitation status	0.900	*
P11.18	Excitation saturation factor3	At non rated-excitation status	0.800	*

	12 Group Motor 1 VF control parameter				
		0: linear VF			
		1: Multi-point VF			
		2: VF to the 1.3			
P12.00	VF curve	3: 1.7 power	0	*	
		4: 2.0 power			
		5: VFcomplete separation			
		6: VF Half separation			

When the VF curve is straight line and power curve, the frequency-voltage curve is as follows:

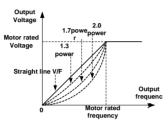


Figure 1: Straight line VF and 1.3, 1.7, 2.0 power VF

multi-stage line type VF curve:

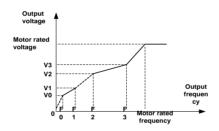


Figure 2: multi-stage line type VF curve

VF full separation

The output voltage and output frequency are completely independent. The output frequency is determined by the frequency source. The output voltage is determined by P12.20. Suitable for applications such as variable frequency power or torque motors.

VF semi-isolated

At this point the ratio of output voltage and output frequency given by the voltage source, the formula is as follows::

output voltage=2 x Voltage source given x output frequency x $\frac{\text{motor rated voltage}}{\text{motor rated frequency}}$

P12.01	Multi-point VF Frequency 1(F0)	0.00Hz∼multi-point VF curve F1(P12.03)	0.00Hz	☆
P12.02	Multi-point VF Voltage 0(V0)	0.0%~100.0%	0.0%	☆
P12.03	Multi-point VF Frequency	multi-point VF curve F0(P12.01)~multi-point	50.00Hz	*
P12.03	1(F1)	VF curve F2(P12.05)	30.00FIZ	×
P12.04	Multi-point VF Voltage 1(V1)	0.0%~100.0%	100.0%	☆
P12.05	Multi-point VF Frequency	multi-point VF curve F1(P12.03)∼multi-point	50.00Hz	☆

	1(F2)	VF curve F3(P12.08)		
P12.06	Multi-point VF Voltage 2(V2)	0.0%~100.0%	100.0%	☆
P12.07	Multi-point VF Frequency 3(F3)	multi-point VF curveF2(P12.05)~600.00Hz	50.00Hz	☆
P12.08	Multi-point VFVoltage 3(V3)	0.0%~100.0%	100.0%	☆
P12.09	Torque boost	0% \sim 200% 0% is automatic torque boost	0%	☆

> Automatic torque boost

When P12.09=0=Automatic torque boost,inverter will automatically compensate output voltage to improve torque in low frequency as per actual load ,it is useful for linear VF curve

- > Manual torque boost
- When P12.09 not 0,it means manual torque output. Output frequency 0 torque increasing value=p12.09*motor stator resistance *rated excitation current, increasing value will be gradully decreased as frequency increase ,if higher than 50% of motor rated frequency, increasing value will be zero
- > Notice:manual torque boost is useful to linear and power curve

. 12.17	limit factor	magnetic zone,10%~100%	0.00	~
P12.17	Weak magnetic zone current	optimize dynamic performance of Weak	0.60	☆
P12.16	Current limit level	20%~180% drive rated current	150%	☆
	selection	2: adjust output frequency		
P12.15	selection	1: only adjust output voltage	2	*
	Current limit function	0: ineffective		
		frequency of the motor		
	effective frequency range	function, 100% corresponds to the rated		
P12.14	Oscillation suppression	Set the range of the oscillation suppression	110%	☆
		range :100%~1200%		
	3	Oscillation suppression effective		
P12.13	Oscillation suppression gains	0~2000	300	☆
		unstable		
		 Increase this setting when the speed is 		
F12.12	Slip compensation filter time	response is slow.	1.008	¥
P12 12		the VF control response to the load. Decrease this setting when the load	1.00s	☆
		It is used to adjust the speed and stability of		
		0.01s~10.00s		
		with loading,		
		speed is higher than the target value		
1		Reduce this setting when the motor		
		with loading.		
		speed is lower than the target value		
P12.11	Sp componedation gain	Increase the setting when the motor	10070	^
	Slip compensation gain	following principles:	100%	☆
		accuracy. Please adjust according to the		
		load, and improve the speed control		
		the asynchronous motor VF control with		
		It is used to compensate the speed drop of		
		0~200%		

		0: digital setting 1: Al1		
		2: Al2		
P12.20		3: Reserved		
	Voltage source for VF	4: Reserved	0	_
P 12.20	separation	5: pulse setting HDI	U	*
		6: Reserved		
		7: communication		
		8: PID		
		9: Potentiometer		
P12.21	Digital setting for VF separation voltage	0.0%~100.0%	0.0%	☆
P12.22	VF separation voltage Accel	0.00s~60.00s	1.00s	☆
1 12.22	and Decel time	0.003	1.003	A
P12.23	VF Separation voltage rates	VF Separation Voltage variation every hour	0.0%	☆
1 12.23	as per time	range:-100.00%~100.00%	0.070	M

13 Group Motor 1 vector control				
P13.00	Speed Proportional Gain	0.1~100.0	12.0	☆
1 13.00	ASR_P1	0.1 100.0	12.0	X
P13.01	Speed Integral Time	0.001s~30.000s	0.100s	☆
P13.01	constant ASR_T1	0.0015 30.0005	0.1008	×
P13.02	Speed Proportional Gain	0.1~100.0	8.0	☆
	ASR_P2	0.1~100.0	0.0	×
P13.03	Speed Integral Time	0.001s~30.000s	0.300s	☆
P 13.03	constant ASR_T1		0.3008	×
P13.04	ASR parameter Switching	0.00Hz - ASB quitabing fraguancy 2/D12.05	5.00Hz	☆
P 13.04	frequency 1	0.00Hz∼ ASR switching frequency 2(P13.05)	5.00HZ	×
D40.05	ASR parameter Switching	ASP switching frequency 1 - 600 00Hz/D13 04)	10.00Hz	☆
P13.05	frequency 2	ASR switching frequency 1~600.00Hz(P13.04)	10.00HZ	¥

P13.00 and P13.01 are Speed adjuster parameter for low-speed use, scope of action from zero to P13.04
P13.02 and P13.03 are Speed adjuster parameter for high-speed use, scope of action from P13.05 to maximum frequency

P13.04-P13.05 Two sets of parameter for linear tansitions

		Unit's digit: Electric torque limit source		
		0:digital setting		
		1:Ai1		
		2:Ai2		
P13.06	Speed control torque	3-4(option card)		
	limit source selection	5:Pulse HDI	00	*
		6:Communication		
		7:Potentiometer		
		Ten'unit: Electric torque limit source		
		Same as unit'digit		
P13.07	Electric torque limit	0.0%~300.0%	160.0%	☆
	Upper limit of brake			
P13.08	torque	0.0%~300.0%	160.0%	☆
	Torque current			
P13.12	directives filter time	Unit: current loop adjust cycle ,0~100	2	☆
P13.13	ACR Proportional Gain1	0.01~10.00 ACR:automatic current regulator	0.4	☆
P13.14	ACR Integral Time1	0.01~300.00ms	10.00ms	☆
P13.15	ACR Proportional Gain2	1~1000 ACR:automatic current regulator	0.4	☆
P13.16	ACR Integral Time2	0.01~300.00ms	10.00ms	☆
		0∼100improve the dynamic response of vector		
P13.17	Voltage feedforward Gain	control,	0	*
		0.0%~50.0%improve the dynamic response of		
P13.19	Voltage margin	weak magnetic curvature.	5.0%	☆
D40.05	Flux weakening adjuster	0.004 5.000	0.400	
P13.20	integral time	0.001s-5.000s	0.100s	☆
P13.22	Slip compensation	50%-200%	100%	☆
P13.23	SVC zero speed directives	0:no action 1:output DC current	0	*

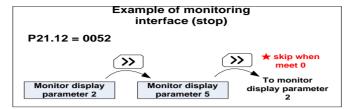
ACR means:automatic current regulator and ASR means :automatic speed regulator

		14 Group Torque control		
		0: digital setting		
		1: Al1		
		2: Al2		
		· ·		
P14.00	Torque setting	3: Al3(reserved)	0	*
		4: Al4(reserved)		
		5: HDI		
		6: Communication		
		7: Potentiometer		
P14.01	Torque digital setting	-200.0~200.0%	0	☆
		Benchmark 10.0%~300.0%		
D14.00	P14.02 Maximum torque	Notice:torque benchmarks for analog inputs and	200.0%	_
P 14.02	waximum torque	high frequency pulse input as well as limit	200.0%	*
		output torque in torque control		
		0.000s~60.000s		
P14.03	Torque Acceleration time	Notice:Torque given time from zero to motor	0.100s	☆
		rated torque		
		0.000s~60.000s		
P14 04	P14.04 Torque control Deceleration time	Notice:Torque given time from motor rated	0.100s	☆
		torque to zero	0.1000	
		0: digital setting		
		1: Al1		
		2: Al2		
P14.05	Upper limit frequency of	· ·	•	
P14.05	torque control	3: Al3(expansion card)	0	*
		4: Al4 (expansion card)		
		5: HDI high frequency pulse input		
		6: communication		
P14.06	Upper limit frequency of	-100.0%~100.0%	100.0%	☆
	torque control			
		Relative to maximum frequency: 0.0%		
P14.07	Reverse speed limit	100.0%	40.0%	☆
	rtororoo opood iiiiit	Notice:Speed limit for reverse speed direction	10.070	
		not specified by the speed limit source		
P14.08	Torque setting over limit	0: match torque setting	0	*
1 14.00	speed	1: speed control	U	^
P14.10	Static friction torque	0.0%~50.0%	10.0%	☆
D44.44	Static friction torque	0.0011- 50.0011-	4.001.1-	
P14.11	compensation	0.00Hz~50.00Hz	1.00Hz	*
		0.0%~50.0%		
B44.46	5	Dynamic friction at rated speed	0.00/	
P14.12	Dynamic friction factor	Notice: motor sliding friction torque at rated	0.0%	☆
		rotating speed		
	Dynamic friction starting			
P14.13	value	0.0%~50.0%	0.0%	☆
				1

	16 Group Energy saving control parameter				
r16.00	Electricity meter count (32BIT)	Unit:KW/H	-	•	
r16.02	Output power	Unit:0.1kw,output power will be negative in regen state	-	•	
r16.03	Power factor	-1.000~1.000	-	•	
P16.04	Electricity meter zero clearing	0:no function; 1111: clear to zero	0	☆	
P16.05	Energy saving control	0: disable 1: enable	0	*	
P16.06	Energy saving voltage limit	0%~50%	0%	☆	
P16.07	Energy saving filter time	0.0∼10.0s	2.0s	☆	

Notice:When energy saving enabled, the output current can be reduced and the power loss can be reduced when the load is light. For example, the fan and pump is light oaded, most of the inverters do not have this function, so we are more energy efficient. Energy savings can be achieved when it is light loads or load changes so slow

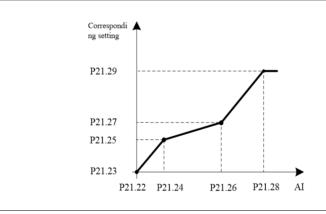
20 Group User-defined function code menu						
P20.00	User-defined function		00.00	☆		
1 20.00	code 1		00.00	Α		
P20.01	User-defined function code 2		00.00	☆		
P20.02	User-defined function code 3		00.00	☆		
P20.03	User-defined function code		00.00	☆		
P20.04	User-defined function code		00.00	☆		
P20.05	User-defined function code		00.00	☆		
P20.06	User-defined function code 7		00.00	☆		
P20.07	User-defined function code 8		00.00	☆		
P20.08	User-defined function code	The value is the function code number,	00.00	☆		
P20.09	User-defined function code	ranging from 00.00 to 63.99.	00.00	☆		
P20.10	User-defined function code	Example: If you want to display P03.01 and P13.00 in the user-defined menu mode (-USr-),	00.00	☆		
P20.11	User-defined function code	set P20.00=03.01, P20.01=13.00	00.00	☆		
P20.12	User-defined function code		00.00	☆		
P20.13	User-defined function code		00.00	☆		
P20.14	User-defined function code		00.00	☆		
P20.15	User-defined function code		00.00	☆		
P20.16	User-defined function code 16		00.00	☆		
P20.17	User-defined function code 17		00.00	☆		
P20.18	User-defined function code 18		00.00	☆		
P20.19	User-defined function code 19		00.00	☆		


	21 Gro	oup Keypad and Display Group		
		Units: UP/DOWN enable selection 0: Disable 1:		
		Enable		
		Ten'unit: clear selection 0: Cleared in non-		
	Keyboard UP/DOWN	operational state 1: Not cleared		
P21.00	function selection	Hundred's unit: Power-down memory selection	0110	*
		0: no memory 1: memory		
		Thousand's unit: rate selection 0: automatic rate		
		1: P01.39 rate		
		0: no function; 1: Forward Jog		
		2: Reverse Jog; 3: Forward/reverse Switch		
P21.02	MKfunction option	4: Quick stop; 5: coast to stop	1	*
		6: Curse left shift(LCD keypad)		
P21.03	STOP function	0:Valid only at Keypad Control	1	
P21.03	STOP function	1:valid at all command Channels	1	☆
P21.04	Monitoring display1	00.00~99.99	27.00	☆
P21.05	Monitoring display2	00.00~99.99	27.01	☆
P21.06	Monitoring display3	00.00~99.99	27.06	☆
P21.07	Monitoring display4	00.00~99.99	27.05	☆
P21.08	Monitoring display5	00.00~99.99	27.03	☆
P21.09	Monitoring display6	00.00~99.99	27.08	☆
P21.10	Monitoring display7	00.00~99.99	06.00	☆
		Unit'digit to Thousand'digit set 1-4 monitor		
		parameter		
		0 means no display, $1{\sim}7$ corresponds to		
		monitor parameter 1~7		
	Running status Monitoring	Unit'digit: choose first monitoring data, $0{\sim}7$		
P21.11	display parameter option	Ten's digit: choose second monitoring data,	5321	☆
	display parameter option	0~7		
		Hundred's digit: choose third monitoring data,		
		0~7		
		Thousand's digit: choose fourth monitoring		
		display, $0{\sim}7$		
P21.12	Stop status Monitoring	Same as P21.11	0052	☆
. 21.12	display parameter option	Samo do 1 21.11	0002	~

VFD500M digital keyboard monitoring interface supports up to 4 monitoring volume. Monitoring variables in running status and monitoring variables in stop status are set by P21.11 and P21.12, respectively. Press

[SHIFT] key on the keyboard to switch the monitoring volume from low to high of P21.11 or P21.12, Encountered "0" then skip, cycle monitoring.

Take the shutdown monitoring interface for example, P21.12 = 0052, there are 2 monitoring variables, which are r27.01 (monitor display parameter 2, P21.05 = 27.01) and r27.03 (monitor display parameter 5, P21.08 =


27.03), press the 【SHIFT】 key on the keyboard to switch between the two monitors, as shown below.

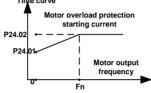
The rules for running the monitoring interface are the same as the shutdown monitoring interface, and will not be repeated

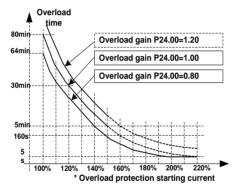
		Unit's digit: quick editing function selection 0: invalid		
		1: Numeric frequency setting		
		2: Numeric torque setting		
		3: PID digital setting 0		
		Note: The quick editing function means that if		
		the current monitoring value is the output		
		frequency or command frequency under the		
		monitoring status, press the [ENTER] key to		
		enter the parameter editing interface directly.		
		The edited parameters are set by the ones digit		
		of this function code.		
	5: ::	Ten's digit: monitor pointer reset selection		
P21.13	Digital keypad	0: When the display status is in the monitoring	01	*
	personalized setting	status from other status, or when the running		
		monitoring status and stop monitoring status are		
		switched, the previously recorded monitoring		
		pointer position will be restored.		
		1: When the display status is in the monitoring		
		status by other status, or when the monitoring		
		status of running status and stop status are		
		switched, the monitor pointer will be reset to the		
		ones of P21.11 or P21.12.		
		Note: when power-on, the shutdown		
		monitoring pointer points to the P21.12 bits,		
		the operation monitoring pointer points to		
		P21.11 bits		
P21.14	Load speed display factor	0.001~65.000	30.000	☆
P21.15	Load speed decimal point digit	0~3	0	☆
04.45		Load speed =P27.00*P21.10		
r21.16	Load speed display	Decimal point digit defined by P21.11	-	•
		0: 0.01Hz; 1: 1Rpm 2:0.1hz 3:10RPM		
D04 :=	0 1 11 11 11	It is used to select the display unit of P00.07,		
P21.17	Speed display unit	r27.00, r27.01, r10.12.When it show RPM	0	*
		unit,HZ light on keypad will flash		

P21.19	Keyboard potentiometer filter time	0.000s~10.000s	0.100s	☆
r21.20	Keyboard potentiometer actual value	0.00V~10.00V Used to view the port voltage of AI2. When AI2 is a current type (0~20mA) input, multiplying this value by 2 is the input current (mA) of the AI2 port.	-	•
r21.21	Keyboard potentiometer conversion value	-100.0% to 100.0% Used to view the output of the Al2 mapped curve.	-	•
P21.22	The horizontal axis 1 of the potentiometer curve	0.00V~P04.41	0.00V	☆
P21.23	The vertical axis 1 of the potentiometer curve	-100.0%~100.0%	0.0%	☆
P21.24	The horizontal axis 2 of the potentiometer curve	P04.39~P04.43	3.00V	☆
P21.25	The vertical axis 2 of the potentiometer curve	-100.0%~100.0%	30.0%	☆
P21.26	The horizontal axis 3 of the potentiometer curve	P04.41~P04.45	6.00V	☆
P21.27	The vertical axis 3 of the potentiometer curve	-100.0%~100.0%	60.0%	☆
P21.28	The horizontal axis 4 of the potentiometer curve	P04.43~10.00V	9.90V	☆
P21.29	The vertical axis 4 of the potentiometer curve	-100.0%~100.0%	100.0%	☆

22 Group AC drive data and configuration	
Depend on drives power	
≤7.5kW: 1kHz~12.0kHz	
11kW~45kW: 1kHz~8kHz	
≥55kw: 1kHz~4kHz	
The carrier frequency can be reduced when it	
came like following phenomenon:	
1 The leakage current generated by the	
inverter is large	
P22.00 Carrier/swithcing frequency 2 The interference generated by the inverter Dependence	end ☆
has an impact on peripheral devices	
3 Long wiring distance between inverter and	
motor	
The carrier frequency can be increased	
whenwhen it came like following	
phenomenon:	
1 The electromagnetic noise generated by	
the motor is large	
Unit'digit: adjustment as per Rotation	
P22.01 Carrier frequency adjustment 0:No; 1:Yes) *
Ten'digit: adjustment as per Temperature	
0 no; 1: yes	
P22.02 Low speed carrier frequency 1.0kHz~15.0kHz Depo	
P22.03 High speed carrier frequency 1.0kHz~15.0kHz Depr	end ☆
0.00Hz~600.00HzWhen the carrier	
Carrier frequency switching frequency is adjusted according to the output	
P22.04 point 1 frequency, the carrier frequency set by 7.00	Hz ☆
P22.02 is used when the output frequency is	
lower than this set value. 0.00Hz~600.00Hz When the carrier	
P22.05 Carrier frequency switching frequency, the carrier frequency set by 50.00	OHz ☆
point2 P22.03 is used when the output frequency is	712
higher than this set value.	
0: SVPWM	
It is normally used	
1: SVPWM+DPWM	
Using this modulation method can reduce the	
switching loss of the inverter and reduce the	
probability of overheating alarm of the	
P22.06 PWM way inverter; however, the electromagnetic noise 0	*
of the motor in the medium speed section will	
be too large.	
2: PWM at random	
The electromagnetic noise generated by the	
motor is white noise, not a sharp squeak.	

		It is only used in special situation		
		10%~100%(modulation percentage)		
P22.07	DPWM switching point	When P22.06 is set to 1, increasing this	30%	+
P22.01	DPWW switching point	setting vaule can reduce the electromagnetic	30%	*
		noise in the middle speed section.		
		50%~110%		
		It is used to define the duty cycle of the		
B00 00		inverter side IGBT. Overmodulation is allowed	1050/	
P22.08	Modulating limit	when it is set to 100% or more, and the	105%	*
		allowable overmodulation is deepened when		
		the set value is increased from 101 to 110.		
		0:diabled		
		1:enabled		
P22.10	AVR function	When the AVR function is enabled, the effect	1	*
		of the DC bus voltage change on the output		
		voltage can be eliminated.		
		0-disabled		
		1-enabled		
	Energy braking voltage	2-only enable when ramp to stop		
P22.11	funtion	This parameter is only used to control the	1	☆
		built-in brake unit. For models without a built-		
		in brake unit, this setting can be ignored.		
		320V~400V(220V level)		
P22.12	Energy braking voltage	600V~800V(380V level)	Depend	☆
	3, 44 3 4 4 3	690V~900V(480V level)		
		0:no Operation		
	Output phase switch	1:output phase switch	0	
		(equal to change Phase between V and		
P22.13		W,For closed loop control, you need to re-		*
		rotate the self-learning to confirm the encoder		
		direction)		
		0:effective when running		
P22.14	Cooling method (fan	1:Forced control(effective when power on)	0	☆
	control)	2:adjustable as per drive temperature		
		0-G type:1-P type		
		 G means normal duty (constant torque) 		
P22.15	G/P drive type	load)	0	*
10	on anveryee	 P means light duty such as fan and 	J	^
		pump		
r22.16	Drive rated power	Read only Unit:0.1kw		
r22.17	Drive rated Voltage	Read only Unit:V		
r22.17	Drive rated current	Read only Unit:0.1A	<u> </u>	•
122.10	Drive rated current	Nead Offig Offic. O. TA	-	•


	23 Group	Drive protection function setting		
		> Unit'digit :Overvoltage stall control		
		0:overvoltage stall disabled		
		1:overvoltage stall enabled		
		2:overvoltage stall enabled self-adjustable		
		The over-voltage stall function limits the amount of		
		power generated by the motor by extending the		
		deceleration time or even increasing the speed,		
		avoiding over-voltage on the DC side and reporting		
		over-voltage faults		
		Ten'unit:Undervoltage stall control		
		· ·		
		0:undervoltage stall disabled		
		1:Undervoltage stall(decelerate to zero		
D00.00	DC Bus voltage control	speed and be in standby mode,after	04	
P23.00	option	power restoring ,it will run again	01	*
		automatically)		
		2: Undervoltage stall		
		deceleration(decelerate to zero and stop)		
		> The undervoltage stall function reduces the motor		
		power consumption or reduces the power		
		consumption of the motor or turns it into a power		
		generation operation to avoid the undervoltage fault		
		on the DC side.		
		> The undervoltage stall function is used when the		
		input power supply quality is poor (the power supply		
		voltage fluctuates downward or the sporadic short		
		power is suspended), and it is necessary to keep		
		the inverter running as much as possible.		
	0	220V Level: 320V~400V		
P23.01	Overvoltage stall	380V Level: 540V~800V	Depend	*
	threshold	480V Level: 650V∼950V		
		220V level: 160V~300V		
P23.02	Undervoltage threshold	380V level: 350V∼520V	Depend	*
		480V level: 400V∼650V	,	
P23.03	Overvoltage stall ratio	0~10.0	1.0	☆
P23.04	Undervoltage stall ratio	0~20.0	4.0	☆
1 20.01	Ondorvorage stail ratio		1.0	^
D02.05	Undervoltage trip	220V Level:160V~300V	Dorsel	
P23.05	threshold	380V Level:350V~520V	Depend	*
	Hadamark 6 8	480V Level:400V~650V		
P23.06	Undervoltage fault detecting time	0.0s∼30.0s	1.0s	☆
D00 07	Daviday,	0:Disabled	_	
P23.07	Rapidcurrent limit	1:Enabled	1	*
P23.10	Over-speed detection value	0.0%∼120.0% maximum frequency	120.0%	☆


P23.12	Detection value of too large speed deviation	0.0%~100.0%(motor rated frequency)	20.0%	☆
P23.13	Detection value of too large speed deviation	0.0s~30.0s 0.0: shielding	0.0s	☆
	Input phase loss	0.0s~30.0s		
P23.14	detection time	0.0: forbidden	8.0s	☆
P23.15	Output phase loss inbalance detecting	0%~100%	30%	☆
P23.18	Fault protection action selection 1	Unit's digit: input phase loss 0: coast to stop 1: Emergent stop 2: Stop as per stop mode 3: continue to Run Ten'unit: user self-defined fault 1 same as Unit's digit Hundred'unit: user self-defined fault 2 same as Unit'digit Thousand's unit: communication fault	0000	❖
P23.19	Fault protection action selection 2	same as unit's digit Unit's digit: motor overload 0: coast to stop 1: emergent stop 2: stop as per stop mode 3: continue to run Ten'unit: motor overheat same as unit'digit Hundred'unit: too large speed deviation same as unit'digit Thousand's unit: motor over speed same as Unit'digit	0000	÷
P23.20	Fault protection action selection 3	Unit's digit: PID feedback lost during running 0: coast to stop 1: fast stop 2: stop as per stop mode 3: continue to run Ten'unit: Reserved same as unit'digit Hundred'unit: reserved same as unit'digit thousand'unit: reserved same as unit'digit	0000	☆
P23.21	Fault protection action selection 4	Unit's digit: output phase loss 0: coast to stop 1: fast stop 2: stop as per stop mode Ten'unit: EEPROM fault 0: coast to stop	0000	☆

		T	T	
		1: fast stop		
		2: stop as per stop mode		
		3: continue to run		
		Hundred's unit: PG card fault(reserved)		
		0: coast to stop		
		1: fast stop		
		2: stop as per stop mode		
		3: continue to run		
		Thousand's unit: off load fault		
		0: coast to stop		
		1: fast stop		
		2: stop as per stop mode		
		3: continue to run		
		Define as per bit:		
		bit0-undervoltage;bit1- inverter overload		
P23.24	Fault reset	bit2-inverter overheat ;bit3-motor overload	0	☆
		bit4-motor overheat;bit5-user'fault 1		
		bit6- user'fault 2; bit7~15 reserved		
		Define as per bit:		
		bit0-overcurrent during acceleration;bit1-		
		overcurrent during deceleration		
		bit2-overcurrent during constant speed;bit3-over		
		voltage during acceleration		
		bit4-overvoltage during deceleratoin;bit5-		
P23.25	Fault source for auto reset	overvoltage during deceleration, pito-	0	☆
		bit6-inverter undervoltage;bit7-input phase loss		
		bit8-inverter overload;bit9-inverter overheat		
		bit10-motor overload;bit11-motor overheat		
		bit12-user'fault 1;bit13-user'fault 2		
		·		
		bit14-Reserved;bit15-Reserved		
P23.26	Fault auto Reset times	0~99	0	☆
P23.27	Numberic output Action at	0:disabled	0	☆
1 20.21	fault reset	1:enabled	0	^
P23.28	Interval time of fault auto	0.1s~300.0s	0.5s	☆
1 25.20	reset	0.15 - 500.05	0.55	A
P23.29	Fault auto reset times	0.1s~3600.0s	10.0s	☆
P23.29	clearing time	0.18/~3600.08	10.08	×
		0: run at current frequency		
	Continuing Running	1: run at setted frequency		
P23.30	frequency selection when	2: run at upper limite frequency	0	☆
	trip	3: run at lower limit frequency		
		4: run at abnormal back-up frequency		
		4. Tull at abhornal back-up inequency		
		0.0%~100.0%(maximum frequency)		
P23.31	Abnormal back-up		5.0%	☆

	24 Group motor Protection parameter				
P24.00	Motor overload protection	0.20~10.00	1.00	☆	
P24.01	Motor overload starting	50.0%~150.0%	100.0%	☆	
1 24.01	current at zero speed	30.070	100.070	ζ	
P24.02	Motor overload starting	50.0%~150.0%	115.0%	☆	
F24.UZ	current at Rated speed	30.0 /6 - 130.0 /6	110.0%	X	

Motor in self cooling mode, heat dissipation is poor when in low frequency but good in condition of high frequency. P24.01 adn P24.02 is used to set the starting point of zero and rated speed overload current in order to obtain a more reasonable under different speed overload protection Tinge curve

Left: Motor overload protection starting current

Right: Motor Overload Protection Curve with Different Overload Protection Gains

Motor overload Overload protection of motor 2 only when P24.04 bits equals one or overload protection of motor 1 or P24.08 bits equals one. P24.00 is used to adjust the overload inverse time curve time, as shown in the right figure above, the minimum motor overload time is 5.0s.

Note: Users need to correctly set the three parameters of P24.00, P24.01 and P24.02 according to the actual overload capacity of the motor. If set unreasonable, prone to motor overheating damage and the inverter is not timely warning of the danger of protection.

		Units: Motor 1 overload protection selection			
P24.04	Motor 1 protection	0: Turn off software overload protection			
		1: Enable software overload protection	11	☆	
	option	Ten's unit: Motor 2 overload protection selection			
		0: Turn off software overload protection			

		1: Enable software overload protection		
P24.12	Off load protection	0:effective 1:ineffective	0	☆
P24.13	Off load detection level	0.0%-100%	10.0%	☆
P24.14	Off load detection time	0.000s-60.000s	1.000s	☆

Off load=unload

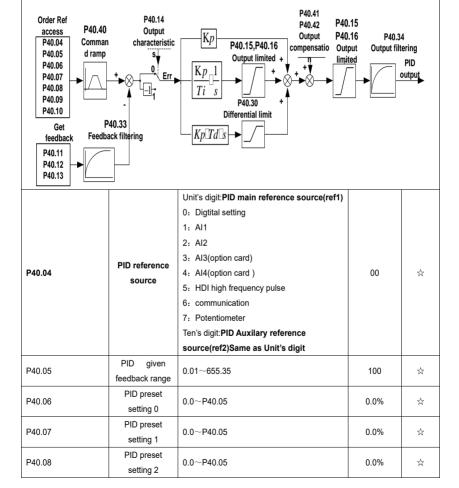
If output current is lower than offload detection level (P24.13) and this status continues for offload detection time (P24.14) when offload detection protection is enabled (P24.12=1)

and inverter is in running mode and not in DC brake, then inverter gives an offload protection fault (Er. LL) report and stops as the offload protection setting (P24.12)

25 Group Fault tracking parameter				
	Current fault	- see detail chapter 6 fault diagnosis and		
r25.00	type	solution	-	•
	Output			
r25.01	frequency at	Unit:0.01Hz	-	•
	fault			
	Output current			
r25.02	at fault	Unit:0.1A	-	•
05.00	Bus voltage at	11.57		
r25.03	fault	Unit:V	-	•
-05.04	Running mode	D		_
r25.04	status 1at fault	- see Parameter r27.10 in detail	-	•
-2E 0E	Input terminal	Bit0~Bit6 corresponds to DI1~DI7		_
r25.05	status at fault	Bit12~Bit15 corresponds to VDI1~VDI4	-	•
r25.06	Working time at	Unit:0.01S		
125.06	fault	Offit.0.018	-	•
	Accumulated			
r25.07	working time at	Unit:hour	-	•
	fault			
r25.08	Frequency	Unit:0.01hz	_	
120.00	source at fault	Offico.offiz		•
r25.09	Torque source at	Unit:0.1% compared to motor rated torque	_	
120.00	fault	office. 170 compared to motor rated torque		•
r25.10	Encoder speed	Unit:RPM	_	
120.10	at fault	O.I.I.I. II.		
r25.11	Electrical angle	Unit: 0.1°		
	at fault			_
r25.12	Running mode	See Parameter r27.11 in detail	_	•
-	status 2 1at fault			
		Define as per unit, 0:ineffective, 1:effective		
r25.13	Input terminal	Bit0: DO1; Bit1: DO2	-	•
	status at fault	Bit2: relay; Bit3~Bit7: reserved;		
		Bit8: VDO1; Bit9: VDO2		
	Heat sink			
r25.14	temperature at	Unit: 0.1° C	-	•
05.45	fault			
r25.15	Low-level fault		-	•
		p Fault recording parameter		I
r26.00	Last fault 1trip	SEE DETAILS IN CHAPTER 6	-	•
	type			
-26.01	Output	Haitin od Ha		
r26.01	frequency at	Unit:0.01Hz	-	•
	fault	Linitio 4A		
r26.02	Output current	Unit:0.1A	-	•
-00.00	at fault			
r26.03	Bus voltage at	Unit:V	-	•

	fault			
	Running mode			
r26.04	status 1at fault	See Parameter r27.10	-	•
	Input terminal	Bit0∼Bit6 corresponds to DI1∼DI7		
r26.05	status at fault	Bit12~Bit15 corresponds to VDI1~VDI4	-	•
00.00	working time at	11 11 00 00		
r26.06	fault	Unit:0.01S	-	•
	Accumulated			
r26.07	working time	Unit:hour	-	•
	atfault			
*26.00	Last fault 2 trip			
r26.08	type		-	•
	Output			
r26.09	frequency at		-	•
	fault			
r26.10	Output current	Same as last fault description		_
120.10	at fault	Same as last fault description		•
r26.11	Bus voltage at	-	_	
120.11	fault			
r26.12	Running mode	_	_	
120.12	status 1at fault	_		•
r26.13	Input terminal	_	_	
120.10	status at fault			•
r26.14	working time at		_	
120.14	fault			Ů
	Accumulated			
r26.15	working time at		-	•
	fault			
r26.16	Last fault 3 trip		_	
	type			_
	Output			
r26.17	frequency at		-	•
	fault			
r26.18	Output current		-	•
	at faul			
r26.19	Bus voltage at		-	•
	fault			
r26.20	Running mode	Same as last fault description	-	•
	status 1at fault			
r26.21	Input terminal		-	•
	status at fault	-		
r26.22	working time at fault	_	-	•
	Accumulated	-		
r26.23	working time		-	•
	atfault	-		

27 Group Monitoring parameter					
r27.00	Running frequency	It can set unit as per Parameter P21.07	-	•	
r27.01	Set frequency	It can set unit as per Parameter P21.07	-	•	
r27.02	Direction indicator	bit0: direction of running frequency bit1: direction of setting frequencybit2: direction of main frequency bit3: direction of auxiliary frequency bit4: direction of UpDown offset bit5: reserved	-	•	
r27.03	Bus voltage	Unit: 1V	-	•	
r27.04	VF separation setting	unit: 0.1%	-	•	
r27.05	Output voltage	unit: 0.1V	-	•	
r27.06	Output current	unit: 0.1A	-	•	
r27.07	Output current percentage	unit: 0.1%(100% of motor rated current)	-	•	
r27.08	Output torque	0.1%	-	•	
r27.09	Torque setting	0.1%	-	•	
127.10	Drives running mode status 1	Bit0:Running status 0-Stop;1-Run Bit1:Motor direction0-Forward;1-Reverse Bit2:Ready signal:0-not ready;1-ready Bit3:fault status 0-no fault;1-fault Bit4~5:fault type:0-free stop;1-fast stop;2- stop as per stop mode; 3: continue to run Bit6:jog status:0-no jog;1-jog status Bit7:Auto tune:0-no;1-yes Bit8:DC braking:0-Non DC braking;1-DC braking Bit9:Reserved Bit10~11:Acceleration and Deceleration: 0:stop/zero output;1:speed up;2:slow down;3:constant speed Bit12:reserved Bit13:current limit status:0-no;1-yes Bit14:overvoltage stalladjustment:0-no;1-yes Bit15:undervoltage stall adjustment:0-no;1-yes	-	•	
r27.11	Drives running mode2	Bit0~1:current command source:0- keypad;1-terminal ;2-communicatoin Bit2~3:motor option:0-motor 1;1-motor 2 Bit4~5:current motor control:0-VF;1-SVC;2- VC Bit6~7:current running mode:0-speed;1- torque;2-position	-	٠	


			I	
r27.14	Accumulated power on time	Unit:hour	-	•
Accumulated				
r27.15 running time		Unit:hour	-	•
r27.18	Heat sink	Unit:0.1 ℃		
127.10	temperature	Offic.o. 1 C	-	
r27.19	Main frequency	Unit:0.01Hz	-	•
r27.20	Auxiliary	unit:0.01Hz	_	
127.20	frequency	din.o.om2		•
r27.21	UpDown offset	unit:0.01Hz	-	•
	frequency			
		dbus communication parameter	I	ı
P30.00	Communication	0:Modbus;	0	*
	type	1∼2: reserved		
		1~247		
P30.01	Drive Address	Different slaves on the same network should set different local addresses;	1	_
F30.01	Drive Address	0 is the broadcast address, all slave	'	_
		inverters can be identified		
		0:1200 bps; 1:2400 bps		
		2:4800 bps; 3:9600 bps	3	
P30.02	Modbus baud rate	4:19200 bps; 5:38400 bps		*
		6:57600 bps; 7:115200 bps		
		0: 1-8-N-1		
		(1 start bit +8 data bits +1 stop bits)		
		1: 1-8-E-1		
		(1start bit +8 data bits +1 even parity +1		
		stop bit)		
		2: 1-8-0-1		
		(1 star bit+8 data bits +1odd parity+1		
P30.03	Modbus data	stop bits)	0	*
	format	3: 1-8-N-2		
		(1 star bit+8 data bits+2 stop bits)		
		4: 1-8-E-2		
		(1 star bits+8 data bit+1 even parity+2		
		stop bits) 5: 1-8-0-2		
		(1 start bit +8 data bits+1 odd parity+2		
		stop bits)		
	Modbus response	1~20msThe delay time of the local to		
P30.04	delay	answer the master	2ms	*
	-	0.0s(disabled)~60.0s(works for master-		
P30 05	Modbus sustine	slave system) When this function code	0.00	_
P30.05	Modbus overtime	effective,if slave do not receive data from	0.0s	*
		master overtime,it will trip as Er.485		
r30.06	Number of process	Add 1 after receive one data, $0{\sim}65535$	-	•
		-		

	data received	count in cycle		
	Number of process	Add 1 after transmiss one data, 0~		
r30.07	data transmission	65536 count in cycle	-	•
		Each time an CRC error frame is		
	Number of error	received, this value is incremented by 1,0		
r30.08	frames received by	to 65535 cycles; it can be used to judge	-	•
	Modbus	the degree of communication		
		interference.		
P00.00	Modbus master-	0: slave	•	
P30.09	slave option	1: master(sent by broadcast)	0	*
	Slave memory			
P30.10	when inverter as	1~9 corresponds to 0x7001~0x7009	1	☆
	master			
		0:output frequency		
		1:set frequency		
	Data sent by	2:output torque		
P30.11	Master	3:set torque	0	☆
	Madio	4:PID setting		
		5:PID feedback		
		6:output current		
	Sending interval of Master	0.010∼10.000sAs a master, after sending		
P30.12		one frame of data, the next frame of data	0.1s	☆
		is sent after this delay.		
	Receiving	-10.000∼10.000The values of slave		
P30.13	proportaionality	registers 0x7001 and 0x7002 take effect	1.00	☆
	factor of slave	after passing through this scaling factor		
		0: 0.01%		
	Communication	1: 0.01Hz		
P30.14	special register	2: 1Rpm	0	☆
	speed unit	Some units of specific communication		
	,	registers can be set by this parameter.		
		See Appendix A for details.		
		When the format of the received frame is		
		a write register, this parameter can be set		
		to reply to the host.		
		0: Reply to the host (standard Modbus		
		protocol)		
		1: Do not reply to the host (non-standard		
P30.15	Modbus response characteristics	Modbus protocol)	0	☆

	40 Group PID function				
r40.00	PID final output	Read only unit:0.1%			
140.00	value	Read only difficult //	-	•	
r40.01	PID final set	Read only units 10/			
140.01	value	Read only unit:0.1%	-	•	
r40.02	PID final	Dood only write 0.40/			
140.02	feedback value	Read only unit:0.1%	-	•	
r40.03	PID deviation	Road only units 0.10/		•	
140.03	value	Read only unit:0.1%	-	•	

PID through the target signal (command) and the controlled amount of the difference between the feedback signal proportional (P), integral (I) and differential (D) operation, adjust the inverter output frequency, etc., to achieve closed-loop system, the controlled amount Stable at the target value.

VFD500M built-in process PID structure as shown below, suitable for flow control, pressure control, temperature control and tension control applications.

P40.09 PID prese setting 3	0.0∼P40.05	0.0%	☆
-------------------------------	------------	------	---

When PID reference source is digital setting, PID digital setting 0~3 depends on DI terminal function 43 (preset PID terminal I) and 44 (preset PID terminal 2):

preset PID terminal1	preset PID terminal 2	PID Digital setting value(0.1%)
0	0	P40.06 * 100.0% / P40.05
1	0	P40.07 * 100.0% / P40.05
0	1	P40.08 * 100.0% / P40.05
1	1	P40.09 * 100.0% / P40.05

For example: When Al1 is used as PID feedback, if the full range corresponds to 16.0Kg pressure and require PID control to be 8.0Kg; then set P40.05 PID feedback range to 16.00, PID digital reference terminal select to P40.06, Set P40.06 (PID preset setting 0) to be 8.00

1:ref1+ref2 2:ref1-ref2 3:ref1*ref2 4:ref1/ref2 5:Min(ref1,ref2) 6:Max(ref1,ref2) 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI)		İ	T		
PID reference source selection PID reference selection			0:ref1		
PID reference source selection 9: Reserved 10: Reserved 11: Reserved 12: Rese			1:ref1+ref2		
PID reference source selection PID reference source selection PID reference source selection PID reference source selection 9: Reserved 10: Reserved 11: Reserved 12: Reserved 12: Reserved 12: Reserved 10: August 11: August 12: August 12: August 12: August 13:			2:ref1-ref2		
P40.10 PID reference source selection PID reference source selection Simin(ref1,ref2) 6:Max(ref1,ref2) 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit P40.13 P1D feedback function selection FID feedback function selection f: Motor Ald output frequency 1: ref1 and ref2 conversion 0 ☆ 1: Reserved 10: Reserved 10: Reserved 10: Reserved 11: Reserved 12: Reserved 12: Reserved 12: Reserved 12: Reserved 12: Reserved 10: Reserved			3:ref1*ref2		☆
P40.10 PID reference source selection 6:Max(ref1,ref2) 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output torque 9: Motor rated output frequency Remain and output frequency Ten's digit: PID feedback source2 (fdb2) Same as Unit's digit P40.13 PA0.13 PID feedback function selection 6: Max(ref1,ref2) 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 11:Reserved 12: Reserved 12: Reserved 12: Reserved 12: Reserved 12: Reserved 10:Reserved 11:Reserved 12: Reserved 12:			4:ref1/ref2		
P40.10 PID reference source selection 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7%	İ		5:Min(ref1,ref2)		
P40.10 source selection 7(ref1+ref2)/2 8: ref1 and ref2 conversion 9: Reserved 10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit P40.13 P1D feedback function selection 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2 0 ☆		PID reference	6:Max(ref1,ref2)		
8: ref1 and ref2 conversion 9: Reserved 10: Reserved 11: Reserved 12: Reserved Sqrtmeans square root calculation, eg: sqrt(50.0%) = 70.7% Unit's digit 0: PID feedback source1(fdb1) 0: Al1 1: Al2 2: Al3(option card) 3: Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection 3: fdb1*fdb2 4: fdb1/fdb2 4: fdb1/fdb2 4: fdb1/fdb2	P40.10		7(ref1+ref2)/2	0	
10:Reserved 11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit P40.13 P1D feedback function selection 10:Reserved 11:Reserved 12: Reserved		Source Selection	8: ref1 and ref2 conversion		
11:Reserved 12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit P40.13 PID feedback function selection 1:fdb1-fdb2 2:fdb1-fdb2 3:fdb1-fdb2 4:fdb1/fdb2 4:fdb1/fdb2			9: Reserved		
12: Reserved Sqrtmeans square root calculation,eg:sqrt(50.0%)=70.7% Unit's digit 0: PID feedback source1(fdb1) 0:Al1 1:Al2 2:Al3(option card) 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2 4:fdb1/fdb2			10:Reserved		
Sqrtmeans square root			11:Reserved		
Calculation,eg:sqrt(50.0%) = 70.7%			12: Reserved		
P40.11 PID feedback source1 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection PID feedback function selection 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2			Sqrtmeans square root		
P40.11 PID feedback source1 PID feedback source2 PID feedback source2 PID feedback function selection PID feedback 2:fdb1-fdb2 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 4:fdb1/fdb2 4:fdb1/fdb2			calculation,eg:sqrt(50.0%)=70.7%		
PID feedback source1 PID feedback source1 PID feedback source1 PID feedback source1 1:Al2 2:Al3(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection PID feedback function selection 1:Al2 2:Al3(option card) 4: PLUSE(HDI) 5: Communication 00 ☆ Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 4:fdb1/fdb2 4:fdb1/fdb2			Unit's digit 0: PID feedback source1(fdb1)		
P40.11 PID feedback source1 PID feedback source1 PID feedback source1 P1D feedback source1 P2:Al3(option card) 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output frequency 7: Motor rated output frequency 8: Motor rated output frequency 7: For sidigit : PID feedback source2 (fdb2) Same as Unit's digit P1D feedback function selection P1D feedback function selection 3:Al4(option card) 4: PLUSE(HDI) 5: Communication 00 ☆ ### Alignment of the purpose of the			0:Al1	00	☆
P40.11 PID feedback source1 PID feedback source1 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection 7: Motor rated output frequency 10: Motor rated output frequency 11: Tedb1+fdb2 12: Fdb1-fdb2 13: Fdb1+fdb2 14: Fdb1/fdb2 15: Fdb1-fdb2 15: Fdb1-fdb2 16: Fdb1-fdb2 17: Fdb1-fdb2 18: Fdb1-fdb2 19: Fd1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb2 19: Fd1-fdb1-fdb1-fdb1-fdb2 19: Fd1-fdb1-fdb1-fdb1-fdb1-fdb1-fdb1-fdb1-fd			1:AI2		
P40.11 PID feedback source1 4: PLUSE(HDI) 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit PID feedback function selection P1D feedback function selection 4: PLUSE(HDI) 5: Communication 00 ☆ 1: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0: fdb1 1: fdb1+fdb2 2: fdb1-fdb2 4: fdb1/fdb2 4: fdb1/fdb2			2:Al3(option card)		
P40.11 PID feedback source1 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2			3:Al4(option card)		
P40.11 source1 5: Communication 6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 4:fdb1/fdb2 4:fdb1/fdb2			4: PLUSE(HDI)		
6: Motor rated output current 7: Motor rated output frequency 8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2	P40.11		5: Communication		
8: Motor rated output torque 9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2			6: Motor rated output current		
9: Motor rated output frequency Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2			7: Motor rated output frequency		
Ten's digit : PID feedback source2 (fdb2) Same as Unit's digit			8: Motor rated output torque		
P40.13 Same as Unit's digit 0:fdb1 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2			9: Motor rated output frequency		
P40.13 PID feedback function selection 1:fdb1+fdb2 2:fdb1-fdb2 3:fdb1*fdb2 4:fdb1/fdb2 4:fdb1/fdb2			Ten's digit : PID feedback source2 (fdb2)		
P40.13 PID feedback			Same as Unit's digit		
P40.13 PID feedback function selection			0:fdb1		
P40.13 function selection function selection			1:fdb1+fdb2		
function selection 3:fdb1*fdb2 4:fdb1/fdb2	P40 13		2:fdb1-fdb2	0	₹>
· · · · · · · · · · · · · · · · · · ·	P40.13		3:fdb1*fdb2	J	~
5:Min(fdb1,fdb2)Take fdb1.fdb2 smaller			4:fdb1/fdb2		
			5:Min(fdb1,fdb2)Take fdb1.fdb2 smaller		

		value		
		6:Max(fdb1,fdb2) Take fdb1.fdb2 bigger		
		value		
		7: (ref1+ref2)/2		
		8: ref1 and ref2 conversion		
		9: Reserved		
		10:Reserved		
		11:Reserved		
		12: Reserved		
		Sqrt means square root		
		calculation,eg:sqrt(50.0%)=70.7%		
P40.14	PID output foature	0-positive	0	☆
	PID output feature	1-negative	0	×

The PID output characteristic is determined by P40.14 and Di terminal 42 function PID positive/negative switching:

P40.14 = 0 and PID positive/negative switching terminal (DI function No. 42) is invalid: PID output characteristic is positive

P40.14 = 0 and PID positive/negative switching terminal (DI function No. 42) is valid: PID output characteristic is negative

P40.14 = 1 and PID positive/negative switching terminal (DI function No. 42) is invalid: PID output characteristic is negative

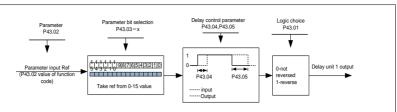
P40.14 = 1 and PID positive/negative switching terminal (DI function No. 42) is valid: PID output characteristic is positive

pooliiro				
P40.15	Upper limit of PID output	-100.0%~100.0%	100.0%	☆
P40.16	lower limit of PID output	-100.0%~100.0%	0.0%	☆
P40.17	Proportional gain KP1	0.0~200.0%	5.0%	☆
P40.18	Integral time TI1	0.00s (no any integral effect) \sim 20.00s	1.00s	☆
P40.19	Differential time TD1	0.000s∼0.100s	0.000s	☆
P40.20	Proportional gain KP2	0.00~200.0%.	5.0%	☆
P40.21	Integral time TI2	0.00s (no any integral effect)∼20.00s	1.00s	☆
P40.22	Differential time TD2	0.000s~0.100s	0.000s	☆
P40.23	PID parameter switchover condition	O: no switchover Do not switch, use KP1, TI1, TD1 1: switchover via DI Switch by DI terminal	0	☆

This function is only valid when P40.39 = 0 which is not calculated. The PID output is reset after the inverter stops. If P40.28 \neq 0, when the inverter runs, the PID output is equal to the initial value of PID and keeps the time of P40.28.

P40.29	PID deviation limit	0.0%~100.0%	0.0%	☆
P40.30	PID differential limit	0.00%~100.00%	1.00%	☆
P40.33	PID feedback filter time	0.000~30.000s	0.010s	☆
P40.34	PID output filter time	0.000~30.000s	0.010s	☆
P40.35	Detection value of PID feedback loss (lower limit)	0.0%(no detection)∼100.0%	0.0%	☆
P40.36	Detection time of PID feedback loss	0.000s~30.000s	0.000s	☆
P40.37	Detection value of PID feedback loss(upper limit)	0.0%~100.0%(no detection)	100.0%	☆
P40.38	Upper Detection	0.000s~30.000s	0.000s	☆

	time of PID			
	feedback loss			
	PID operation at	0-No PID operation at stop		
P40.39	stop	1-PID operation at stop	0	☆
	PID command			
P40.40	for accel and	0.0s∼6000.0s	0.0s	☆
	decel time			
		0-digital setting		
	PID offset	1-Al1		
P40.41	selection	2-AI2	0	☆
		3-Al3(option card)		
	PID offset digital			
P40.42	setting	-100.0%~100.0%	0.0%	☆
		Group Sleeping function		
		Unit's digit: sleep mode selection		
		0:no sleep function		
		1:sleep by frequency		
		2:Al1 sleep (Al1 as pressure feedback)		
		3:Al2 sleep(Al2 as pressure feedback)	010	
		Ten's digit :wake up mode selection		
		0:wake up by frequency		
		1:Al1 wake up (Al1 as pressure		
		feedback)		
		2:Al2 wake up (Al2 as pressure		
		feedback)		
		Hundred's digit :		
		0: positive direction		
		Feedback big then sleep, feedback small then		
		wake up, P41.04 < P41.03		
	Sleep mode and	During running, pressure feedback > P41.03,		
P41.00	wake up	the inverter sleeps When sleeping, pressure		☆
	selection	feedback < P41.04, the inverter wakes up		
		1: reverse direction		
		Feedback small then sleep, feedback big then		
		wake up, P41.04 > P41.03		
		During running, pressure feedback < P41.03,		
		inverter sleep When sleeping, pressure		
		feedback > P41.04, the inverter wakes up		
		> Normally, the frequency source is PID		
		setting, and sleep by frequency wake-up		
		direction is the same as the PID action		
		direction P40.14.		
		> Sincethe parameter setting is		
		unreasonable, when the wake-up		
		condition enables, even if the sleep		
		condition is established, the sleep mode		

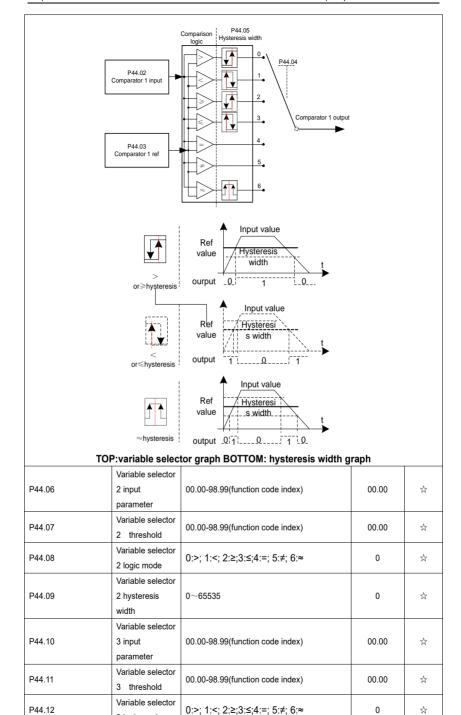

Chapter 5 Function code table		VFD500M vector control frequency i	nverter user mar	ıual
		cannot be activated, and Pay special attention to avoid accident when use		
P41.01	Sleep setting value by frequency	0.00Hz~600HZ,It will sleep if value is less than this value	0.00Hz	☆
P41.02	Wake up threshold by frequency	0.00hz~600.00hz, ,It will wake up if value is bigger than this value	0.00Hz	☆
		uency wake-up, it must be set by P41.01 < P41.0 ency wake-up must be set to PID shutdown oper		
P41.03	Sleep setting value by pressure	0~100.0%	0.0%	☆
P41.04	Wake up threshold by pressure	0.~100.0%	0.0%	☆
P41.05	Sleep delay time	0.0s~6000.0s	0.0s	☆
P41.06	Wake up delay up	0.0s~6000.0s	0.0s	☆
P41.07	Sleep decelerating time	0.00(coast to stop)~60000s Setting value decide by P03.16 P03.16 = 2, 0.00~600.00s; P03.16 = 1, 0.0s~6000.0s; P03.16 = 0, 0s~60000s P41.07 set to 0,sleeping stop mode to free coast。	0.00s	☆
		42 Group Simple PLC	ı	

		coast			
42 Group Simple PLC					
r42.00	PLC current	Read only			
142.00	running mode	Read Only	-	•	
	PLC current				
r42.01	running	Read only	-	•	
	remaining time				
r42.02	PLC times of	Read only			
142.02	cycles	Read Only	-	•	
		Unit'digit:Running mode			
		0: Single cycle then stop			
		1: Single cycle then keep last speed			
		2: Recycle			
P42.03	Simple PLC	3: Plc reset when single cycle stop	003	☆	
F42.03	running mode	Ten's digit:Saving selection at power off	003		
		0:Power off without saving 1:Power off with			
		saving			
		Hundred'digit:Power save selection at stop			
		0:Stop without power saving 1:stop with			

		saving		
P42.04	PLC running times	1~60000	1	☆
P42.05	PLC step 1 running time	0.0~6553.5 unit depend on P42.21 Notice:Running time do not conclude acceleration and deceleration time,same as following	0.0	☆
P42.06	PLC step 2 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.07	PLC step 3 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.08	PLC step 4 running time	0.0~6553.5 unit depend on P42.21	0.0	☆
P42.09	PLC step 5 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.10	PLC step 6 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.11	PLC step 7 running time	0.0~6553.5 unit depend on P42.21	0.0	☆
P42.12	PLC step 8 running time	0.0~6553.5 unit depend on P42.21	0.0	☆
P42.13	PLC step 9 running time	0.0~6553.5 unit depend on P42.21	0.0	☆
P42.14	PLC step 10 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.15	PLC step 11 running time	0.0~6553.5 unit depend on P42.21	0.0	☆
P42.16	PLC step 12 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.17	PLC step 13 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.18	PLC step 14 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.19	PLC step 15 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.20	PLC step 16 running time	0.0∼6553.5 unit depend on P42.21	0.0	☆
P42.21	PLC running time unit	0:S;1:minute;2:hour	0	☆
P42.22	PLC step 1-4 ACCEL/DECEL time selector	Unit'digit:step 1 ACCEL/DECEL time selector ten'digit: step 2 ACCEL/DECEL time selector Hundred's: step 3 ACCEL/DECEL time selector Thousand'unit:step 4 ACCEL/DECEL time selector 0- ACCEL/DECEL time 1	0000	☆

	T	I		
		1- ACCEL/DECEL time 2		
		2- ACCEL/DECEL time 3		
		3- ACCEL/DECEL time 4		
		Unit'digit: ACCEL/DECEL time 5		
		Ten'digit: ACCEL/DECEL time 6		
	PLC step 5-8	Hundred'digit: ACCEL/DECEL time 7		
P42.23	ACCEL/DECEL	Thousand'digit: ACCEL/DECEL time 8	0000	☆
P42.23	time selector	0- ACCEL/DECEL time 1	0000	×
	time Selector	1- ACCEL/DECEL time 2		
		2- ACCEL/DECEL time 3		
		3- ACCEL/DECEL time 4		
		Unit'digit: ACCEL/DECEL time 9		
		ten'digit: ACCEL/DECEL time 10		
		Hundred'digit: ACCEL/DECEL time 11		
	PLC step 9-12	Thousand'digit: ACCEL/DECEL time 12		
P42.24	ACCEL/DECEL	0- ACCEL/DECEL time 1	0000	☆
	time selector	1- ACCEL/DECEL time 2		
		2- ACCEL/DECEL time 3		
		3- ACCEL/DECEL time 4		
		Unit's Digit: ACCEL/DECEL time 13		
		Ten'Digit: ACCEL/DECEL time 14		
	PLC step 13-16	Hundred'digit: ACCEL/DECEL time 15		
P42.25	ACCEL/DECEL	Thousand's digit: ACCEL/DECEL tim 16	0000	☆
F42.20	time selector	0- ACCEL/DECEL time 1	0000	h
	lline selector	1- ACCEL/DECEL time 2		
		2- ACCEL/DECEL time 3		
		3- ACCEL/DECEL time 4		
		0.01~60000s		
	PLC stop	Setting value decide by P03.16		
P42.26	decelerating	P03.16 = 2, 0.00~600.00s;	20.00s	☆
	time	P03.16 = 1, 0.0s~6000.0s;		
		P03.16 = 0, 0s∼60000s		
	43 Gro	up Programming delay-unit		
		Read only,define as per bit:0000~1111		
	Delay unit	Bit0:delay unit 1; Bit1: delay unit 2		
r43.00	1∼6 output	Bit2: delay unit 3; Bit3: delay unit 4	-	•
	status	Bit4: delay unit 5; Bit5: delay unit 6		
VED 50014:		11 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

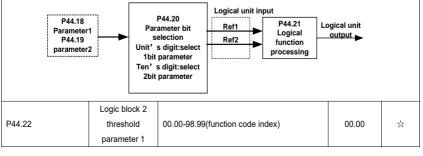
VFD500M inverter built-in 6 delay unit. The delay unit can collect the status of 0 ~ 15 bits of all parameters that can be viewed in the function code table, and finally output the delay unit status after delay processing and logic selection. Can be used for Di / Do, comparator / logic unit output delay and other functions, but also as a virtual relay.


Delay unit 1 block diagram

The delay unit can be used for delay processing of Di/Do, and can also be used with comparators and logic units to achieve more flexible timing functions.

	achi	ieve more flexible timing functions.		
P43.01	Delay unit 1-6 logicl	000000B-111111B	0	☆
P43.02	Delay unit 1 input parameter selection	00.00-98.99(function code index)	0000	☆
P43.03	Delay unit 1 input bit selection	0-15	0000	☆
P43.04	Delayunit 1 on delay time	0.0s~3000.0s	0000	☆
P43.05	Delayunit 1 off delay time	0.0s~3000.0s	0000	☆
P43.06	Delay unit 2 input parameter selection	00.00-98.99(function code index)	0000	☆
P43.07	Delay unit 2 input bit selection	0-15	0000	☆
P43.08	Delay relay 2 on delay time	0.0s~3000.0s	0.0s	☆
P43.09	Delayunit2 off delay time	0.0s~3000.0s	0.0s	☆
P43.10	Delay unit 3 input parameter selection	00.00-98.99(function code index)	0.0s	☆
P43.11	Delay unit 3 input bit selection	0-15	0.0s	☆
P43.12	Delay unit3 on delay time	0.0s∼3000.0s	0.0s	☆
P43.13	Delay unit3 off delay time	0.0s~3000.0s	0.0s	☆
P43.14	Delay unit 4 input parameter selection	00.00-98.99(function code index)	0.0s	☆
P43.15	Delay unit 4	0-15	0.0s	☆

	input bit			
	selection			
	Delay relay 4 on			
P43.16	delay time	0.0s∼3000.0s	00.00	☆
	Delay unit4 off			
P43.17	delay time	0.0s∼3000.0s	0.0s	☆
	Delay unit 5			
P43.18	input parameter	00.00-98.99(function code index)	00.00	☆
	selection	00:00 00:00(.a.road:::0000 :::00x/)	00.00	
	Delay unit 5			
P43.19	input bit	0-15	0	☆
1 40.10	selection	0-10		^
	Delay unit5 on			
P43.20	delay time	0.0s∼3000.0s	0.0s	☆
	Delay unit5 off			
P43.21	delay time	0.0s∼3000.0s	0.0s	☆
	Delay unit 6			
P43.22	input parameter	00.00-98.99(function code index)	00.00	☆
	selection	00:00 00:00(.a.road:::0000 :::00x/)	00.00	
	Delay unit 6			
P43.23	input bit	0-15	0	☆
	selection			
	Delay unit6 on			
P43.24	delay time	0.0s∼3000.0s	0.0s	☆
	Delay unit6 off			
P43.25	delay time	0.0s∼3000.0s	0.0s	☆
	-	/ariable selector and logic block		
	Variable selector	bit0~3 indicate the output of variable		
r44.00	1~4 output	selector 1-4	-	•
	Logic block 1~4	bit0 \sim 3 indicate the output of logic block 1 \sim		
r44.01	output	4	-	•
	Variable selector			
P44.02	1 input	00.00∼98.99(Function code index)	00.00	☆
	parameter			
	Variableselector			
P44.03	1 threshold	00.00∼98.99(Function code index)	00.00	☆
	Variable selector			
P44.04	1 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	☆
	Variableselector			
P44.05	1 hysteresis	0~65535	0	☆
F44.U0	width	0 00000		


VFD500M inbuilt 4 group variable selector,this function can be used for any two function code parameters,by selecting the comparison relationship, and output will be 1 if it meet conditions or it will be 0.Variable selector output can act as DI,VDI,virtual relay input and DO,relay.etc output.Users can easily and flexibily get logic function ,variable selector 1 frame as follows

3 logic mode

P44.13	Variable selector 3 hysteresis width	0~65535	0	☆
P44.14	Variable selector 4 input parameter	00.00-98.99(function code index)	00.00	\$
P44.15	Variable selector 4 threshold	00.00-98.99(function code index)	00.00	☆
P44.16	Variable selector 4 logic mode	0:>; 1:<; 2:≥;3:≤;4:=; 5:≠; 6:≈	0	☆
P44.17	Variable selector 4 hysteresis width	0~65535	0	☆
P44.18	Logic block 1 threshold parameter 1	00.00-98.99(function code index)	00.00	☆
P44.19	Logic block 1 threshold parameter2	00.00-98.99(function code index)	00.00	☆
P44.20	Logic block 1 input source	Unit'digit: parameter 1 bit selection 0-F (Represent 0-15),P44.18 corresponds to 0-15 bit Ten'digit:parameter 2 bit selection 0-F (Represent 0-15),P44.19 corresponds to 0-15 bit	0	
P44.21	Logic bock 1 function	0:no function;1:and;2:or;3:not and;4:not or;5:Xor 6:Ref=1 effective;Ref2=1 ineffective 7:Ref1 up effective,Ref2 up ineffective 8:Ref1 up and signal reverse 9:Ref1 up and output 200ms pulse width 10:Ref2=0 ineffective always;Ref2=1,Ref1 up effective	0	☆

VFD500M built-in 4 logical units. The logic unit can perform any one of 0-15 bits of any parameter 1 and any one of 0-15 bits of any parameter 2 for logic processing. The condition is true output 1, otherwise 0 is output. Logic unit output can be used as DI, VDI, delay unit and other inputs, DO, relays and other output, the user can more flexible access to the required logic. The schematic block diagram of the logic unit 1 is as follows.

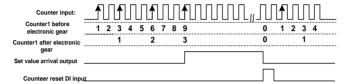
P44.23	Logic block 2 threshold parameter2	00.00-98.99(function code index)	00.00	☆
P44.24	Logic block 2 input source	Unit'digit: parameter 1 bit selection 0-F (Represent 0-15),P44.22 corresponds to 0-15 bit Ten'digit:parameter 2 bit selection 0-F (Represent 0-15),P44.23 corresponds to 0-15 bit	0	☆
P44.25	Logic bock 2 function	0:no function;1:and;2:or;3:not and;4:not or;5:Xor 6:Ref=1 effective;Ref2=1 ineffective 7:Ref1 up effective,Ref2 up ineffective 8:Ref1 up and signal reverse 9:Ref1 up and output 200ms pulse width	0	☆
P44.26	Logic block 3 threshold parameter 1	00.00-98.99(function code index)	00.00	☆
P44.27	Logic block 3 threshold parameter2	00.00-98.99(function code index)	0	☆
P44.28	Logic block 3 input source	Unit'digit: parameter 1 bit selection 0-F (Represent 0-15),P44.26 corresponds to 0-15 bit Ten'digit:parameter 2 bit selection 0-F (Represent 0-15),P44.27 corresponds to 0-15 bit	0	\$
P44.29	Logic bock 3 function	0:no function;1:and;2:or;3:not and;4:not or;5:Xor 6:Ref=1 effective;Ref2=1 ineffective 7:Ref1 up effective,Ref2 up ineffective 8:Ref1 up and signal reverse 9:Ref1 up and output 200ms pulse width	0	☆
P44.30	Logic block 4 threshold parameter 1	00.00-98.99(function code index)	00.00	☆
P44.31	Logic block 4 threshold parameter2	00.00-98.99(function code index)	00.00	☆
P44.32	Logic block 4 input source	Unit'digit: parameter 1 bit selection 0-F (Represent 0-15),P44.30 corresponds to 0-15 bit Ten'digit:parameter 2 bit selection 0-F (Represent 0-15),P44.31 corresponds to 0-15 bit	0	☆

	I			
		0:no function;1:and;2:or;3:not and;4:not		
		or;5:Xor		
		6:Ref=1 effective;Ref2=1 ineffective		
P44.33	Logic bock 4	7:Ref1 up effective,Ref2 up ineffective	0	☆
	function	8:Ref1 up and signal reverse		
		9:Ref1 up and output 200ms pulse width		
		10:Ref2=0 ineffective always;Ref2=1,Ref1		
		up effective		
P44.34	Constant setting	0∼65535	0	☆
1 11.01	1	0 0000		^
P44.35	Constant setting	0∼65535	0	☆
1 44.00	2	0 00000	· ·	^
P44.36	Constant setting	0∼65535	0	☆
1 44.00	3	0 00000	· ·	^
P44.37	Constant setting	-9999~9999	0	☆
1 44.07	4	0000		^
	Constant setting			
P44.38	1 as per bit	$0{\sim}65535$ (define as bit)	0	☆
	definition			
	Constant setting			
P44.39	2 as per bit	$0{\sim}65535$ (define as bit)	0	☆
	definition			
	Constant setting			
P44.40	3 as per bit	$0{\sim}65535$ (define as bit)	0	☆
	definition			
	Constant setting			
P44.41	4 as per bit	0∼65535(define as bit)	0	☆
	definition			

Constant setting for reference of variable selector or logic block input

0 1						
45 Group Multi-functional counter						
r45.00	Counter 1 input value	The count value before the electronic gear, that is, the number of pulses received by the counter 1 hardware, 32-bit read-only data	-	•		
r45.02	Counter 1 count value	Count value after electronic gear, 32-bit read-only data	-	•		
P45.04	Counter 1 set value	1 to 4294967295, when the counter 1 count value (after the electronic gear) reaches this setting, the DO function "Counter 1 set value reached" is valid.	1000	☆		
P45.06	Counter 1 maximum value	1 to 4294967295, set the maximum value of counter 1 (after electronic gear)	429496729 5	☆		
P45.08	Counter 1 Electronic gear numerator	1~65535 Counter 1 count value = counter 1 input value ×(electronic gear numerator / electronic gear denominator)	1	☆		

	Counter 1			
P45.09	Electronic gear	1~65535	1	☆
	denominator			


VFD500M has two inbuilt counters:counter 1 is for 32 bit multifunctional counter with electronic gear;Counter 2 is a common counter with 16 bit without electronic gear.following is counter 1 function and use.

Counter 1 get input pulse signal via DI function 50 (counter 1 Input), when counter 1 comes to setting value (P45.04) via electronic gear, it can come to signal via DO function (21) and counter will continue to count

When counter arrive maximum value, it will decide to overflow as per P45.13

Set Di(51) terminal to Count1 reset ,when terminal effective,counter 1 will reset

For example: P45.04=3, P45.08=3, P45.09=1, Count 1 function as following picture

	1	T	-	
r45.10	Counter 2(16	Read only and save when power off	-	•
	bit) actual value			
		When the count value of counter 2 reaches		
P45.11	Counter 2 (16	this setting, the DO function "counter 2 set	1000	☆
	bit) set value	value reached" is valid.Setting range: 1 \sim	.000	
		65535		
	Counter2 (16	$1\sim$ 65535, set the maximum value of counter		
P45.12	bit) maximum	2.Setting range: 1~65535	65535	☆
	value	2.55tang range. 1 55555		
		Ones place: counting method 0: stop		
		counting after reaching the maximum value		
	Counter 1 Control	1: Reset after the maximum value is		
		counted, and recount from 0		
		Tens place: the action after the counter		
P45.13		reaches the set value 0: Continue to run 1:	11	☆
		Free stop 2: Reduced speed to stop 3:		
		Emergency stop		
		Hundred's place: Power-down save option		
		0: The count value is not saved after power		
		failure1: Save count value when power off		
		Ones place: counting method 0: stop		
		counting after reaching the maximum value		
		1: Reset after the maximum value is		
		counted, and recount from 0		
D45 44	Counter 2	Tens place: the action after the counter		
P45.14	Control	reaches the set value 0: Continue to run 1:		
		Free stop 2: Reduced speed to stop 3:		
		Emergency stop		
		Hundred's place: Power-down save option		
		0: The count value is not saved after power		
	•			

Chapter 5 Function code table VFD500M vector control frequency inverter user manual								
		failure1: Save count value when power off						
Count 1/2 overflow action:when counter higher than maximum value as following chart								
Maximum setting Counter value Pulse input								
	Stop	counting Continu	ue counting					
	60 0							
		up Motor 2 basic parameter						
P60.00	Control mode	Same as P00.04	0	*				
P60.01	Upper limit frequency	Same as P01.07	0	*				
P60.02	Upper limit frequency digital setting	Lower limit (P01.09) ~ maximum frequency(P01.06)	50.00Hz	☆				
P60.04	Accel and Decel time option	0: same as motor 1 1: Accel and Decel time 3 When choose 1,Motor 2 can convert betweens accel and decal time 3 and 4 by DI terminal function code 55 or switch by output frequency comparing with P60.05 P60.06)	0	*				
P60.05	Accel time frequency switchover 2	0.00Hz~maximum frequency (P01.06)	0.00Hz	☆				
P60.06	Decel time frequency switchover 2	0.00Hz~maxinumm frequency(P01.06)	0.00Hz	☆				
61 Group Motor2 parameter								
61.xx same as motor 1 parameter P11.xx								
		oup Motor 2 VF control parameter						
		same as motor 1 VF control P12.xx						
63 Group Motor 2 Vector control parameter								

63.xx same as motor 2 Vector control P13.xx

Chapter 6 Fault Diagnosis and Solution

VFD500M inverter has 32 types of warning information and protection function. In case of abnormal fault, the protection function will be invoked, the inverter will stop output, and the faulty relay contact of theinverter will start, and the fault code will be displayed on the display panel of the inverter. Beforeconsulting the service department, the user can perform self-check according to the prompts of thischapter, analyze the fault cause and find out solution. If the fault is caused by the reasons as described in the dotted frame, please consult the agents of inverter or factory directly.

ucconstant	lilo dolloc	i ii diii o, pi	lease consult the agents of inverter of fact	uncony.
Fault Name	Fault code	Display	Possible Causes	Solutions
Inverter unit protection	1	Er. SC	1: Motor insulation aging 2: The cable is damaged and contact, short circuit 3:The distance between motor and inverter are too long. 4: Output transistor breakdown 5: The internal wiring of the inverter is loose, or the hardware is bad. 6:Brake transistor short circuit	Confirm the insulation resistance of the motor. If it is turned on, replace the motor. Check the power cable of the motor Install reactor or output filter 4, seeking technical support 5, seeking technical support 6. Check if the braking resistor is damaged and the wiring is correct.
Over current during acceleration	2	Er.OC1	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The acceleration time is too short. 4: Manual torque boost or V/F curve is not appropriate. 5: The voltage is too low. 6: The startup operation is performed on the rotating motor. 7: A sudden load is added during acceleration. 8: The frequency inverter model is of too small power class.	1: Eliminate external faults. 2: Perform the motor auto- Tuning in cold state 3: Increase the acceleration time. 4: Adjust the manual torque boost or V/F curve. 5: Adjust the voltage to normal range. 6: Select rotational speed tracking restart or start the motor after it stops. 7: Remove the added load. 8: Select a frequency inverter Of higher power class.
Over current during deceleration	3	Er.OC2	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is not performed. 3: The deceleration time is too short. 4: The voltage is too low. 5: A sudden load is added during deceleration. 6: The braking unit and braking resistor are not installed	1: Eliminate external faults. 2: Perform the motor auto-tuning. 3: Increase the deceleration time. 4: Adjust the voltage to normal range. 5: Remove the added load. 6: Install the braking unit And braking resistor.

Fault Name	Fault code	Display	Possible Causes	Solutions
Over current at constant speed	4	Er.OC3	1: The output circuit is grounded or short circuited. 2: Motor auto-tuning is notperformed. 3: The voltage is too low. 4: A sudden load is added during operation. 5: The frequency inverter model is of too small power class.	1:Eliminate external faults. 2: Perform the motor autotuning. 3:Adjust The voltage to normal range. 4: Remove the addedload. 5: Select a frequency Inverter of higher power class.
Overvoltage during acceleration	5	Er.OU1	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration time is too short 5:The motor is shorted to ground	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the acceleration time 5:eliminate the part of the ground short circuit
Overvoltage during deceleration	6	Er.OU2	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The decceleration time is too short 5:The motor is shorted to ground	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the decceleration time 5:eliminate the part of the ground
Overvoltage at constant speed	7	Er.OU3	1:The input voltage is too high 2:The surge voltage is mixed in the input power supply. 3: There is an external force to drive the motor to run, or the brake type load is too heavy 4:The acceleration or decceleration time is too short 5:The motor is shorted to ground	1:the power supply voltage is reduced to the normal range 2:install DC reactor 3:Cancel the external force of the draggable motor or install the brake unit 4: increase the acceleration or decceleration time 5:eliminate the part of the ground

Fault Name	Fault code	Display	Possible Causes	Solutions
Low voltage	8	Er.Lv1	1: Instantaneous power failure occurs on the input power supply or input phase loss 2: The frequency inverter's input voltage is not within the allowable range. 3: Cut off the power during operation 4:The internal wiring of the inverter is loose, or the hardware is bad.	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Contactor open	9	Er.Lv2	1: Instantaneous power failure occurs on the input power supply 2: The frequency inverter's input voltage is not within the allowable range. 3: Cut off the power during operation 4:the internal wiring of the inverter is loose, or the hardware is bad.	1:Check if the input power supply is abnormal, whether the input power terminal is loose, whether the input contactor or the air switch is abnormal. 2:adjust the voltage to the normal range 3:Power off after the inverter stops 4:seeking technical support 5: For the unstable power supply, if the performance requirements are low, try to enable the undervoltage stall function (P23.00).
Frequency inverter overload	10	Er. oL	1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3: When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The frequency converter selection is too small 5:Overload at low speed operation	Reduce the load and check the motor and mechanical conditions. increase the acceleration and deceleration time Adjust the torque boost or V/F curve select the inverter with a larger power level Perform motor self-learning in cold state and reduce carrier frequency at low speed

Fault Name	Fault code	Display	Possible Causes	Solutions
Motor overload	11	Er.oL1	1:The load is too large or the motor is blocked. 2:The large inertia load acceleration and deceleration time is too short 3:When the VF is controlled, the torque boost or V/F curve is not suitable. 4:The motor selection is too small 5:Overload at low speed operation 6:Improper setting of motor parameters and motor protection parameters	1. Reduce the load and check the motor and mechanical conditions. Correctly set the motor parameters and motor protection parameters. 2, increase the acceleration and deceleration time 3. Adjust the torque boost or V/F curve 4, select a motor with a higher power level 5. Perform motor self-learning in cold state and reduce carrier frequency at low speed 6, check the settings of related parameters
Power input phase loss	12	Er.iLP	1: The three-phase power input is abnormal. 2: The drive board is faulty. 3: Thelightning proof board is faulty. 4: The main control board is faulty.	1:Eliminate external faults. 2: Ask for technical support. 3: Ask for technical support. 4: Ask for technical support.
Power output phase loss	13	Er.oLP	1: The cable connecting the frequency inverter and the motor is faulty. 2: The frequency inverter's three-phase outputs are unbalanced when the motor is running. 3: The drive board is faulty. 4: The IGBT module is faulty.	1:Eliminate external faults. 2: Check whether the Motor three phase winding is normal. 3: Ask for technical support. 4: Ask for technical support.

Fault Name	Fault code	Display	Possible Causes	Solutions
IGBT Module overheat	14	Er. oH	1: The ambient temperature is too high. 2: The air filter is blocked. 3: The fan is damaged. 4: The thermally sensitive resistor of the IGBT module is damaged. 5: The inverter IGBT module is damaged.	1:Lower the ambient temperature. 2: Clean the air filter. 3: Replace thedamaged fan. 4:Replace the damaged thermally sensitive resistor. 5: Replace the inverter module.
Motor overheat	16	Er. oH3	1:The temperature sensor wiring is loose 2:The motor temperature is too high 3:The motor temperature sensor detects that the temperature is greater than the set threshold.	1:Check the temperature sensor wiring 2:Improve the carrier frequency, strengthen the heat dissipation of the motor, reduce the load, and select a motor with higher power. 3:Check if the set threshold is reasonable.
By wave current limitingfault	17	Er.CbC	1: The load is too heavy or locked- rotor occurs on the motor. 2: The frequency inverter model is of too small power class	1: Reduce the load and check the motor and mechanical condition. 2: Select a frequency inverter of higher power class.
Ground short circuit	18	Er.GF	1. Motor burnout or insulation aging 2, The cable is damaged and contact, short circuit 3. The distributed capacitance of the terminal and motor cable is larger motor cable 4, Hardware is broken	Confirm the insulation resistance of the motor. If it is turned on, replace the motor. Check the power cable of the motor to eliminate the fault point. Great the carrier frequency, install the output reactor
module temperature detection fault	20	Er.tCK	1, Temperature detection line broken 2, Drive board is faulty 3. Main control board is faulty 4, The environmental temperature is too low	Check the thermistor wiring Ask for technical support Ask for technical support manual intervention to drive the temperature rise
Current detection fault	21	Er.CUr	1: The HALL device is faulty. 2: The drive board is faulty. 3: The control board is faulty	1: Replace the faulty HALL device. 2: Replace the faulty drive board. 3: Ask for technical support.

Fault Name	Fault code	Display	Possible Causes	Solutions
Motor over-speed	25	Er. oS	1: The encoder parameters are setincorrectly. 2: The motor auto-tuning is notperformed. 3: The over-speed detectionparameters are set incorrectly	1: Set the encoder parametersproperly. 2: Perform the motor autotuning. 3: Set the over-speed detection parameter correctly based on the actual situation.
Too large speed deviation	26	Er.DEV	1: The encoder parameters are setincorrectly. 2: The motor auto-tuning is notperformed. 3: The detection parameters of toolarge speed deviation are setincorrectly.	1: Set the encoder parameters properly. 2: Perform the motor autotuning. 3: Set the detection parameters correctly based on the actualsituation.
Motor auto-tuning fault 1	27	Er.tU1	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	1: Set the motor parameters according to the nameplateproperly. 2: Check the cable connecting between the Frequency inverter and themotor.
Motor auto-tuning fault2	28	Er.tU2	1: The motor parameters are not set according to the nameplate. 2: The motor auto-tuning times out.	Set the motor parametersaccording to the nameplateproperly. Check the cable connecting between the Frequency
Off load	31	Er. LL	The frequency inverter running currentis lower than the setting value.	Confirm whether the load is off Check that the load is disconnected or the parameter setting is correct
EEPROM read- write fault	32	Er.EEP	Eeprom Operate too frequent The EEPROM chip is damaged.	Operate Eeprom suitable Replace the main control board
Running time arrival	33	Er.TTA	Inverter trial time arrival	1:Contact agent or distributor
485Communication fault	34	Er.485	the work of the host computer is not normal the communication line is not normal the communication parameter set is incorrect	Check the connection of upper computer Check the communication connection line Set communication parameters correctly
PID feedback lost during running	36	Er.FbL	PID feedback <p40.35 setting="" value<br="">and P40.36 not zero,PID feedback>P40.37 setting value and P40.38 not zero</p40.35>	check PID feedback signal P40.35 and P40.37 set correct parameter
User-defined fault 1	37	Er.Ud1	1: The signal of user-defined fault 1 is input via DI. 2:The signal of user-defined fault 1 is input via virtual I/O.	Reset the operation. Reset the operation

Fault Name	Fault code	Display	Possible Causes	Solutions
User-defined fault 2	38	Er.Ud2	1: The signal of user-defined fault 2 is input via DI. 2:The signal of user-defined fault 2 is input via virtual I/O.	Reset the operation. Reset the operation

The fault code is used for the communication read fault type: when the communication reads the registers r25.00, r26.00, r26.08, r26.16, the register contents of the reply are fault coded.

6.2 Warning type

The warning is used to remind and inform the user of the current state of the inverter. When the warning occurs, the keypad will display a warning message, and the warning will automatically reset when the warning is cleared. Some warnings require the user to check the cause before running the drive, and some do not care. Warning As an instant reminder, the drive does not store the corresponding information. Bit 12 of r27.10 indicates whether there is a warning message currently.

Warning name	War ning code	Display	Reason	Measure
Insufficient power	1	PoFF	1: The DC link voltage is insufficient and cannot be started normally.	1:Check if the inverter power supply is normal.
Wrong parameter	2	A.PAR A	The parameter settings are wrong, such as: The torque mode is set in the VF control mode.	1:Modify and check theparameter compatibility problem
Sleeping status	5	SLEEP	The system is in a sleep state, and the system will automatically start when hibernation is over.	1:Generally no need to pay attention to it

The warning code is used for the communication read warning type: when the communication reads register r25.16, the contents of the returned register are the warning code.

Chapter 7 Daily maintenance of frequency inverters

8.1 Daily maintenance

Due to the influence of temperature, humidity, dust and vibration, it will lead to poor heat dissipation and component aging of frequency inverter, and results in potential failure or reducing the service life of frequency inverter. Therefore, it is necessary to do daily and regular maintenance of the frequency inverter.

8.1.1 Daily maintenance

Due to the influence of temperature, humidity, dust and vibration, it will lead to poor heat dissipation and component aging of frequency inverter, and results in potential failure or reducing the service life of frequency inverter. Therefore, it is necessary to do daily and regular maintenance of the frequency inverter. Daily check items:

- 1) Check if the sound is normal during the running of the motor;
- 2) Check if there is a vibration during the running of the motor;
- 3) check whether the installation environment of frequency inverter has changed;
- 4) Check if the cooling fan of frequency inverter is working correctly, the cooling air duct is clear;
- 5) Check if the frequency inverter is overheating;
- 6) Make sure that the frequency inverter should always be kept in a clean state;
- 7) Clear up effectively the dust on the surface of frequency inverter, prevent the dust from entering into the inside of frequency inverter, especially for the metal dust;
- 8) Clear up effectively the oil and dust on the cooling fan of frequency inverter.

8.1.2 Regular inspection

Please regularly check the frequency inverter, especially for the difficult checking place of running. Regular inspection items:

- 1) Check the air duct and clear up regularly;
- 2) Check if there are any loose screws;
- 3) Check if the inverter has been corroded;
- 4) Check whether the wiring terminals show signs of arcing:
- 5) Main circuit insulation test.

Note: When using the megger(please use the DC 500V meg ohm meter) to measure the insulation resistance, you shall disconnect the main circuit with the frequency inverter. Do not use the insulation resistance meter to test the control circuit. It don't have to do the high voltage test (It has been done when the frequency inverter produced in factory.)

8.2 Wearing parts replacement

The wearing parts of frequency inverter include the cooling fan and filter electrolytic capacitor, its service life is closely related to the using environment and maintenance status. The general service life is shown as follows:

Part Name	Service Life
Fan	2 ~ 3 Years

Electrolytic capacitor	4 ~ 5 Years

The user can confirm the replace time according to the running time.

- 1) Possible reasons for the damage of cooling fan: bearing wear and vane aging. Distinguish standard: Any cracks in the fan vanes, any abnormal vibration sound during the starting of frequency inverter.
- 2) Possible reasons for the damage of filter electrolytic capacitor: poor quality of the input power supply, the environment temperature is high, the load change frequently and the electrolyte aging. Distinguish standard: Any leakage of its liquid, if the safety valve is protruding, electrostatic capacitance and insulation resistance measurement.

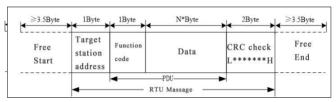
8.3Warranty Items

- 1) Warranty only refers to frequency inverter.
- 2) Under normal use, if there is any failure or damage, our company is responsible for the warranty within 18 months. (Leave factory date is subjected to the S/N on the frequency inverter nameplate or according to the contract). When over 18 months, reasonable fee will be charged for maintenance;
- 3) During the period of 18 months, if the following situation happens, certain maintenance fee will be charged;
 - a. The users don't follow the rules in the manual lead to the frequency inverter damaged;
 - b. The damage caused by fire, flood and abnormal voltage;
 - c. The damage caused by using the frequency inverter for abnormal functions;
 - d. The relevant service fee is calculated according to the manufacturer's standard, if there is an contract, then it is subject to the contract items.

Appendix A Modbus communication protocol

VFD500M series of inverter provides RS485 communication on interface, and adopts MODBUS communication protocol. User can carry out centralized monitoring through PC/PLC to get operating

requirements and user can set the running command, modify or read the function codes, the workingstate or fault information of frequency inverter by Modbus communication protocol. In addition VFD 500can also be used as a host to broadcast with other VFD500 communication.


A.1 Protocl fomat

RS485 asynchronous half-duplex.

RS485 terminal default data format: 1-8-N-1 (1 start bit, 8 data bits, no parity, 1 stop bit), the default baud rate: 9600bps. See parameter group set 30.

A.2 Message format

The VFD500M series inverter Modbus message includes the start sign, the RTU message, and the end sign $_{\circ}$

The RTU message includes the address code, the PDU (Protocol Data Uint, the protocol data unit), and the CRC check. PDU includes the function code and the data section.

RTU frame format:

Frame start (START)	More than the 3.5 byte transmission time		
Target station address (ADR)	Communication address:1 to 247(0: broadcastaddress)		
	Command Description		
	code		
Command code	0x03	Read multiple registers of the AC drive	
(CMD)	0x06 Write a single register to the AC drive.		
	0x10 Write Multiple registers to the AC drive.		
	0x08 Diagnostic command code		
Number of function	Including the register address (2Byte), the number of registers n(2Byte)		
code	and the register	content (2nByte), etc.see A3 in detail	
CRC CHK low level	It indicates the replying data or the data waiting to		
CRC CHK high level	write-in. CRC 16 check value, During the transmission, high bit is put in		
ONO OF IN High level	frontand low bit is at the back.see detail in A.5 Chapter		
FRAME END	More than 3.5 byte transmission time		

A.3 Command code instruction

A.3.1 Command code 0x03Read multiple registers or status words

Request PDU

Command code	1byte	0x03
initial address	2byte	0x0000~0xFFFF(high 8
		bit in front)
Number of registers	2byte	0x0001-0x0010 (1~
		16,high 8 bit in front)

Response PDU

Command code	1byte	0x03
Initial address	1byte	2n (n means Number of
		registers)
Number of registers	2* nbyte	Register value high 8 bit
		in front,first send initial
		address'register value

Wrong PDU

Command code	1byte	0x83
Abnormal code	1byte	See A.4Abnormal
		response information

Currently Modbus protocol 0x03 command code does not support cross-group read multiple function codes, it will be wrongif more than the current group of function code number

A.3.2 Command code 0x06 write single registers or status word command codes Request PDU

Command code	1byte	0x06
Initial address	2byte	0x0000~0xFFFF(high 8
		bit in front)
Register value	2byte	0x0000~
		0xFFFF(register value
		high 8 bit in front)

Respond PDU

Command code	1byte	0x06
Register address	2byte	0x0000∼0xFFFF
Register value	2byte	0x0000∼0xFFFF

Wrong PDU

Command code	1byte	0x86
Abnormal code	1byte	See A4 Abnormal
		response information

A.3.3 Command 0x10write multiple registers or status word command codes

Request PDU

Command code	1byte	0x10
Initial address	2byte	0x0000~0xFFFF(high 8
		bit in front)
Number of Register	2byte	0x0001~0x0010(1~16,
		high 8 bit in front)
Number of Byte	1byte	2n (n is number of
		Register)

Register Value	2* nbyte	Register value high 8 bit
		in front, first send initial
		address'register value

Respond PDU

Command code	1byte	0x10
Initial address	2byte	$0 \text{x} 0 0 0 0 \sim 0 \text{xFFFF} (\text{high})$
		8 bit in front)
Number of register	2byte	$1{\sim}16(1{\sim}16, \text{ high 8 bit}$
		in front)

Wrong PDU

Command code	1byte	0x90
Abnomal Code	1byte	See Abnormal response
		information

A.3.4 Commad code 0x08Diagnostic function

- Modbus Command Code 0x08 Providea series of tests to check the communication system between the client (master) device and the server (slave) or various internal error conditions in the server.
- This function uses the sub-command code of 2 bytes inquery to define the type of test to be performed. The server copies the command and subcommand codes in the normal response. Some diagnostics cause the remote device to return the data through the normally responding data fields.
- Diagnostic functions to remote devices generally do not affect the user program running in the device.
 The main diagnostic function of this product is not line diagnosis (0000), used to test the host from the machine is normal communication.

Request PDU

Command code	1byte	0x08
Subcommand code	2byte	0x0000~0xFFFF
Data	2byte	0x0000~0xFFFF

Respond PDU

Command code	1byte	0x08
Subcommand code	2byte	0x0000
Data	2byte	Same as request of PDU

Wrong PDU

Command code	1byte	0x88
Abnomal code	1byte	See Abnormal response
		information

A.4 Abnormal response information

When the master device sends a request to the slave device, the master expects a normal response. The master's query may result in one of four events:

- (1) If the slave device receives a request for a communication error and the query can be processed normally, the slave device will return a normal response.
- (2) If the slave device does not receive the request due to a communication error, no information can be returned and the slave device times out.
- (3) If the slave device receives a request and detects a communication error (parity, address, framing error, etc.), no response is returned and the slave device times out.
- (4) If the slave device receives no communication error request, but can not handle the request (such as the register address does not exist, etc.), the slave station will return an

abnormal response to inform the master of the actual situation.

Abnormal response command code = normal response command code + 0x80, Abnormal code value and meaning as shown in the following table

Error	Name	Description	
code			
0x01	Invalid command code/error	The function code received by the slave is outside the	
	function code	configured range	
0x02	Error data address/Illegal	Slave station receives the data address is not allowed	
	register address	address	
		the number of registers being Read and write is out of	
		range	
		When writing multiple registers, the number of bytes in	
		the PDU is not equal to the number of registers	
0x03	wrong frame format	Length of frame is not correct	
		CRC verifying not passed	
0x04	Data is out of range	The data received by the slave exceeds the	
		corresponding register minimum to maximum range	
0x05	Reading request refuse		
		Operate to read-only register write in running status	

A.5 CRC check

CRC (Cyclical Redundancy Check) use RTU frame. The message includes an error detection field based on the CRC method. The CRC field examines the contents of the entire message. The CRC field is two bytes containing a binary value of 16 bits. It is calculated by the transmission equipment and added to the message. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field, If the two CRC values are not equal, there is an error in the transmission. There is a lot of information on the Internet about CRC checking it is not elaborated hereabout CRC check code generation algorithm,

A.6 Register address distribution

The register address of VFD500M is 16-bit data, the upper 8 bits represent the function code group number, the lower 8 bits represent the group number, the upper 8 bits are sent before. The 32-bit register occupies two adjacent addresses, the even address stores the lower 16 bits, and the next address (odd address) of the even address stores the upper 16 bits.

In the register write operation, in order to avoid frequent damage caused by memory EEPROM write, using the highest bit of the register address indicates whether it save as EEPROM, the highest bit to be 1 indicates to save in EEPROM, 0 means save only in RAM. In other words, if you want to write the register value which is saved after power-off, you should add 0x8000 to the original register address.

VFD500M register address as follows:

Adress space	Descriptoin
0x0000 ~ 0x6363	High 8 bit means group number (0-99), low 8 bit means within group serial number (0-99), illustrated by hexadecimal for Example: Example 1: Function code 06.19, with address is 0x0613 (0x06=6, 0x13=19). Example 2: Function code 27.06, with address is 0x1806 (0x18=27, 0x06=6). Example 3: Function code 40.15, with address is 0x280F (0x28=40, 0x0F=15).

Communication command. The values and functions are as follows: 0x00001: forward running: 0x0001: forward running: 0x0002: reverse running: 0x0003: forward jog: 0x0004: reverse jog: 0x0006: decelerating stop: 0x0006: decelerating stop: 0x0008: fault reset; Communication speed given. The unit of this register can be set by P30.14. 0.01% (-100.00% ~ 100.00%) 0.01Hz (0 ~ 600.00Hz) 1Rpm (0 ~ 65535Rpm) 0x7002 Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7004 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~100.00%) 0x7000 External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit										
0x7000 0x7000 0x7000 0x7001 0x7002 0x7002 0x7002 0x7002 0x7002 0x7003 0x7003 0x7003 0x7004 0x7004 0x7005 10x7005 10x7006 10x7007 10x7007 10x7007 10x7007 10x7008 10x7007 10x7008 10x7009 10x7009 10x7009 10x7009 10x7009 10x70009 10x70000						and functi	ions are a	s follows:		
0x7000 0x7000 0x7001 0x7001 0x7001 0x7002 0x0003: forward jog: 0x0006: decelerating stop: 0x0006: decelerating stop: 0x0006: decelerating stop: 0x0008: fault reset: 0x7001 0x7001 0x7001 0x7002 0x7002 0x7002 0x7002 0x7002 0x7003 0x7004 0x7004 0x7004 0x7004 0x7005 0x7006 0x			,							
0x7000 0x0003; forward jog; 0x0005; free stop; 0x0006; decelerating stop; 0x0007; immediate stop; 0x0008; fault reset; Communication special address 0x7001 0x7002 Communication or per display and provided in the provid			0x0001: forward running;							
0x7000 0x0004: reverse jog: 0x0005: free stop: 0x0006: decelerating stop: 0x0007: immediate stop: 0x0008: fault reset: Communication special address Communication special address 0x7001 1Rpm (0 ~ 605.00Hz) 1Rpm (0 ~ 655.35Rpm) 0x7002 Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7004 Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~100.00% ~ 100.00%) 0x7009 External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit11 Bit10 Bit9 Bit8			0x0002: reverse running;							
0x0005: free stop; 0x0006: decelerating stop; 0x0007: immediate stop; 0x0008: fault reset; Communication speed given. The unit of this register can be set by P30.14. 0.01% (-100.00% ~ 100.00%) 0.01Hz (0 ~ 605.00Hz) 1Rpm (0 ~ 655.35Rpm) Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. Ox7004 Electric torque limit 0.1% (0~300.0%) Ox7006 Power generation torque limit 0.1% (0~300.0%) Ox7006 Power generation torque limit 0.1% (0~300.0%) Ox7008 PID setting source.0.01% (-100.00% ~ 100.00%) Ox7009 VF separation voltage given.0.1% (0~100.00% ~ 100.00%) Ox7000 External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Carrell of the communication dedicated register are defined as follows: Dox		0x7000	0x0003:							
0x0006: decelerating stop; 0x0007: immediate stop; 0x0008: fault reset; Communication speed given. The unit of this register can be set by P30.14. 0.01% (-100.00% ~ 100.00%) 0.01Hz (0 ~ 605.00Hz) 1Rpm (0 ~ 655.35Rpm) Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. Ox7004 Electric torque limit 0.1% (0~300.0%) Ox7006 Power generation torque limit 0.1% (0~300.0%) Ox7007 PID setting source.0.01% (-100.00% ~ 100.00%) Ox7008 PID feedback source 0.01% (-100.00% ~ 100.00%) Ox7009 VF separation voltage given.0.1% (0~100.00%) Ox700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			, 5							
0x0007: immediate stop: 0x0008: fault reset;			• •							
Ox0008: fault reset; Communication speed given. The unit of this register can be set by P30.14.			0x0006:	decelerat	ing stop;					
Communication speed given. The unit of this register can be set by P30.14.										
0x7001			0x0008:	fault rese	t;					
Ox7001 Ox7002 Ox7002 CommunicationTorque given.0.01% (-300.00% ~ 300.00%)			Communi	cation spe	eed given.	. The unit	of this reg	jister can	be set by	P30.14。
0.01Hz (0 ~ 600.00Hz) 1Rpm (0 ~ 65535Rpm) 0x7002 CommunicationTorque given.0.01% (-300.00% ~ 300.00%) Communication upper frequency given. The unit of this register can be set by 0x7003 P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. Ox7004 Different units range same as 0x7001. Ox7005 Electric torque limit 0.1% (0~300.0%) Ox7006 Power generation torque limit 0.1% (0~300.0%) Ox7007 PID setting source.0.01% (-100.00% ~ 100.00%) Ox7008 PID feedback source 0.01% (-100.00% ~ 100.00%) Ox7009 VF separation voltage given.0.1% (0~100.0%) Ox700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit9 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Different communication dedicated register are defined as follows:		0×7001	0.01% (-	100.00%	~ 100.00%	6)				
Ox7002 CommunicationTorque given.0.01% (-300.00% ~ 300.00%) Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. Ox7005 Electric torque limit 0.1% (0~300.0%) Ox7006 Power generation torque limit 0.1% (0~300.0%) Ox7007 PID setting source.0.01% (-100.00% ~ 100.00%) Ox7008 PID feedback source 0.01% (-100.00% ~ 100.00%) Ox7009 VF separation voltage given.0.1% (0~ 100.0%) Ox700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 D02 D01 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8	Communicatoin	0.77001	0.01Hz(0 ~ 600.0	0Hz)					
Communication upper frequency given. The unit of this register can be set by P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit9 Bit8	special address		1Rpm (0	~ 65535F	Rpm)					
0x7003 P30.14. Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 D02 D01 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8	0x7002 Comm		Communi	cationTor	que given	.0.01% (-	-300.00%	~ 300.00	%)	
Different units range same as 0x7001. Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			Communi	cation up	per freque	ncy given	. The unit	of this reg	jister can l	be set by
Torque mode speed limit. The unit of this register can be set by P30.14. Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 D02 D01 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0x7003	P30.14.							
Different units range same as 0x7001.			Different units range same as 0x7001.							
Different units range same as 0x7001. 0x7005 Electric torque limit 0.1% (0~300.0%) 0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0.7004	Torque mode speed limit. The unit of this register can be set by P30.14.							
0x7006 Power generation torque limit 0.1% (0~300.0%) 0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0X700 4	Different units range same as 0x7001.							
0x7007 PID setting source.0.01% (-100.00% ~ 100.00%) 0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0x7005	Electric to	rque limit	0.1% (0	~300.0%)	1			
0x7008 PID feedback source 0.01% (-100.00% ~ 100.00%) 0x7009 VF separation voltage given.0.1% (0~ 100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 D02 D01 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0x7006	Power ge	ower generation torque limit 0.1% (0~300.0%)						
0x7009 VF separation voltage given.0.1% (0~100.0%) 0x700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 DO2 DO1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0x7007	PID settin	g source.	0.01% (-	100.00%	~ 100.00%	6)		
Ox700A External fault setting DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 DO2 DO1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8		0x7008	PID feedb	ack source	ce 0.01%	(-100.00	% ~ 100.0	0%)		
DO status setting. When the DO function (please refer to P07.01 ~ P07.10) is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7		0x7009	VF separa	ation volta	ge given.	0.1% (0~	100.0%)			
is set to 0 (no function), its status comes from the setting of the communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7		0x700A	External f	ault settin	g					
communication dedicated register, and the corresponding bit of 1 means it is valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 DO2 DO1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			DO status	s setting.	When the	DO funct	ion (pleas	e refer to	P07.01 ~	P07.10)
valid. The bits of this register are defined as follows: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 DO2 DO1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			is set to	0 (no	function),	its statu	us comes	from th	ne setting	of the
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 RL2 RL1 DO2 DO1 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			communication dedicated register, and the corresponding bit of 1 means it is					eans it is		
RL2 RL1 DO2 DO1										
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8			Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
							RL2	RL1	DO2	DO1
VD02 VD01			Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
									VDO2	VDO1

- 2) Inverter status: Read the inverter status, see 27 groups of function codes.
- 3) Inverter fault description: read the inverter fault see 25.00 function code (0x1900)

VFD Fault address	VFD trip information					
0x1900 (25.00 function code)	0000: no fault 0001: SC protection 0002: overcurrent during acceleration 0003: overcurrent during deceleration 0004: overcurrent at constant speed 0005: overvoltage during acceleration 0006: overvoltage during deceleration	0015: current detection fault 0016: PG card feedback fault 0017: Encoder zero detection fault 0018: Reserved 0019: overspeed 001A: too large speed deviation 001B: motor auto tuning fault 1				
	0007: overvoltage at constant speed	001C: motor auto tuning fault 2				

0000 1 11 5 11	2015
0008: low voltage fault	001D: motor auto tuning fault 3
0009: contactor open	001E: motor auto tuning fault 4
000A: VFD overload	001F: off load
000B: motor overload	0020: Eeprom read and write fault
000C: power input phase loss	0021: Reserved
000D: power output phase loss	0022: Communication time out fault
000E: IGBT module overheat	0023: extension card fault
000F: Reserved	0024: PID feedback lost during running
0010: motor overheat	0025: User-defined fault 1
0011: fast overcurrent time out fault	0026: User-defined fault 2
0012: Ground fault	
0013: motor auto tuning fault reserved	
0014 : drives temperarure detection	
fault	

A.7 Register data type

There are several types of register data, and each type of communication setting method is shown in the following table:

Types of register data	Communication setting method
16-bit unsigned number	0~65535 corresponds to 0xFFFF; the decimal point does not need to be processed.Example: Set P00.07 to 40.00Hz: Write 0x0FA0 to the 0x0007 address.
16-bit signed number	-32768~32767 corresponds to 0x8000~0x7FFFF. Example: Set P14.01 to -50.0%: Write 0xFE0C to the 0x0E01 address.
Binary number	Represents a value of 16 bits. For example, the content of the 0x0600 address is 0x0012, which means:Bit1 of r06.00=1, bit4=1; that is, DI1 and DI5 (HDI) are valid
"One hundred thousand" type	"Units" ~ "Thousands" correspond to 0~3bit, 4~7bit, 8~11bit, 12~15bit respectively. Example: Set the "Unit'digit" of P40.04 to Al1 and "ten's digit" to Al2: Write 0x0021 to the 0x2804 address.
32-bit unsigned number	The contents of the two registers need to be combined into 32-bit numbers. For example, read the meter r16.00: Step 1: Read 2 registers from the starting address 0x1000 Step 2: Watt-hour meter reading = ((Uint32)0x1001 value<<16) + 0x1000 value
32-bit signed number	Similar to 32-bit unsigned numbers. The value of the even address is still the lower 16 bits, and the value of the next address (odd number) of the even address indicates the upper 16 bits.

A.8 The inverter acts as a Modbus master

VFD500M can be used as a Modbus master station, it currently only supports broadcast network. When P30.09 is set as 1, master mode can be enabled. The sending frame as master station is as follows:

								١
0x00	0x06	0x70	<u>N</u>	<u>VaIH</u>	<u>ValL</u>	CRCL	CRCH	l

Instruction:

- 1. N indicates the slave register of the operation which is set by P30.10.
- 2. Val means the data sent, Val = (ValH << 8) + ValL, the function code P30.11 is to select the contents of the data sent.
- 3. The idle time between frame and frame is set by function code P30.12.